
1

A Brief Tutorial on MUVR2:
Multivariate methods with Unbiased Variable selection in R

Yingxiao Yan and Carl Brunius, Gothenburg, 22 Jan 2024

Catalogue

1. What is MUVR2?

2. Installation

3. Preparing data

4. Analysis

4.1. Regression analysis

4.2. Classification analysis

4.3. Dealing with repeated samples

4.4. Multilevel analysis

4.5 Recap

5. Covariate adjustment

6. Resampling tests

7. Reference

2

1. What is MUVR2?

The MUVR2 package contains algorithms for machine learning (ML; also known as multivariate

modeling), aimed at finding associations between predictors (an X matrix of continuous and

categorical variables) and a target variable (a Y vector, which is a continuous variable for regression

or a categorical variable for classification). MUVR2 is particularly useful to cope with data that has

large numbers of variables and few observations: MUVR2 constructs robust, parsimonious ML

models that generalize well, minimize overfitting and facilitate interpretation of results through an

automatic selection of variables-of-interest (Shi et al 2019). The operating principles of the MUVR2

package originate from the MUVR package (still maintained at Carl Brunius / MUVR · GitLab) (Shi et

al 2019). However, the package has expanded with more functionality and also undergone some

change in syntax, which warranted a breakoff into a separated R package.

From a technical perspective, MUVR2 is a statistical validation framework which incorporates

minimally biased variable selection through recursive elimination performed within a repeated

double cross-validation (rdCV) scheme. MUVR2 selects both minimal-optimal variables, i.e. the

smallest set of highly informative variables-of-interest (useful e.g. for discovery of predictive

biomarkers) and all-relevant variables, i.e. containing all variables-of-interesting that are relevant to

describe the association between predictor and target variables (e.g. for biological interpretation

and mechanistic investigation) (Shi et al 2019). MUVR2 supports several different data analytical

problems, largely corresponding to different data types in the target and/or predictor variables:

regression (Y is continuous), classification (Y is categorical) and multilevel (Y is a dummy variable and

X is a so-called effect matrix, calculated from data with sample dependency, e.g. before/after or

cross-over interventions). Please see additional explanations and details later in section 4.

The MUVR2 package allows elastic net (EN) core modeling in addition to partial least squares (PLS)

and random forest (RF). Through this addition, covariate adjustment can now be performed in the

EN modeling. We further incorporated one-hot encoding (Yu et al., 2022), which entails re-coding

categorical variables in the predictors onto multiple continuous variables coded as 1 or 0 for class

membership. Furthermore, we upgraded the permutation test procedure into what we herein

denote as resampling tests, which also include a reference distribution for assessing overfitting. The

details of these functionalities are explained in section 5.

The working principle of MUVR2-PLS and MUVR2-RF modeling is visualized in Figure 1. The original

data is randomly subdivided into Outer segments. For each outer segment, the remaining (Inner)

data is divided into Training and Validation sets, used for tuning model parameters. This procedure is

repeated for successively fewer predictor variables, achieved through recursive ranking and

backwards elimination. Each Outer segment is then predicted using an optimized consensus model

trained on all Inner observations, ensuring that the holdout test set was never used for training or

tuning of modeling parameters. The entire procedure is then repeated to reduce stochastic effects

from the sampling of data into segments, thus improving modeling stability and performance.

https://gitlab.com/CarlBrunius/MUVR

3

Figure 1. Graphical representation (A) and pseudocode (B) of the

MUVR2 algorithm for PLS and RF core modeling.

The working principle of MUVR2-EN modeling is visualized in Figure 2. Differing from the working

principle of MUVR2-PLS and MUVR2-RF, MUVR2-EN does not perform recursive ranking and

backwards elimination and thus does not perform variable selection within the model building stage

(Please see section 4.2 for further details).

Figure 2. Graphical representation (A) and pseudocode (B) of the

MUVR2 algorithm for EN core modeling.

2. Installation

First, please ensure that you have downloaded and installed R on your computer (https://www.r-

project.org/). Furthermore, for practical data analytical work we recommend to download, install

and work in RStudio (https://www.rstudio.com/) or another IDE of your choice, which has several

advantages over working in “simple” command line R. There are several online resources for

learning to work efficiently with R and RStudio (e.g. https://www.rstudio.com/online-learning/) and

you can use any search engine to find good, freely available material. In this tutorial, R code that you

may directly run in your Rstudio console is shown in red monotype font. Functions, parameters

and arguments are written in italics.

1. Install the ‘remotes’ package from CRAN:

install.packages("remotes")

A

B

B

A

https://www.r-project.org/
https://www.r-project.org/
https://www.rstudio.com/
https://www.rstudio.com/online-learning/

4

2. Install MUVR2 from Gitlab.

library(remotes)

install_github("MetaboComp/MUVR2")

3. To reduce computation time, MUVR2 uses the ‘doParallel’ package for parallel processing:

install.packages("doParallel")

3. Preparing data

The MUVR2 algorithm uses predictors (X) and a target (Y) data which are matched by observations,

i.e. each position in the Y target variable must be matched to the corresponding row in the X matrix.

The X matrix thus has observations in the rows and variables in the columns. The X columns need to

have unique names (variable identifiers). This can be checked with colnames(X).

Some data types are not readily modeled by PLS without some preprocessing. For efficient analysis

by PLS or EN, microbiota data may for example be log-transformed following the addition of a

“pseudo count” (i.e. an offset) to manage zero values. For convenience, MUVR2 provides the

function preProcess() which performs 5 different preprocessing tasks: offset (of all data); zero

offset (of zero values in the data), transformation (log, sqrt or none), centering (mean, none or

customized – see help file using ?preProcess) and scaling (unit variance, pareto, none or

customized – see help file using ?preProcess).

The effect of predictor variables’ scaling in MUVR2 will depend on the choice of the core algorithm.

For example, random forest is a scale-invariant technique and therefore insensitive to

transformations such as log or sqrt, to centering and to scaling. PLS, on the other hand, is very

sensitive to both transformations and scaling. The default in MUVR2-PLS is to internally center to the

mean and scale data to unit variance in all underlying submodels (scale = TRUE). If other scaling

options are desired, the user should disable automatic internal scaling (scale = FALSE) and pre-

perform a desired preprocessing technique, e.g. using the preProcess() function.

The following tutorial sections give examples of how you can use different core modeling methods in

different problems, i.e. MUVR2-PLS for regression analysis, MUVR2-EN for classification analysis and

MUVR2-RF for multilevel analysis. Importantly, to avoid any confusion, we emphasize that you can

use any of the 3 core modeling methods for any of the 3 problem types (regression, classification or

multilevel), with or without repeated (dependent) samples.

4. Analysis

Please note that the MUVR2 algorithm performs resampling of the data in each repetition leading to

slightly different results each time an analysis is run, wherefore results may differ slightly from those

reported for the regression, classification and multilevel analysis reported here.

4.1. Regression analysis

In this example, we will walk through a MUVR2 regression analysis using PLS core modeling. In this

regression example, we will use the “freelive2” dataset, which has data on dietary exposure to

wholegrain rye and urine metabolomics data from 58 individuals to identify biomarkers of whole-

grain rye exposure (Hanhineva et al 2015).

First, we set up libraries, data and parameters: Typing library(doParallel) and library(MUVR2)

will call in relevant libraries and then typing data("freelive2") will load 3 objects: A continuous

5

‘YR2’ target variable with wholegrain rye consumption for 58 individuals; A numeric ‘XRVIP2’ matrix,

consisting of 1147 metabolomics features from the samples of the 58 individuals; An ‘IDR2’ vector

with unique identifiers of each individual (numerical IDR2). Note that we will discuss the scenario of

repeated samples later in section 4.4, where each individual could have more than one observation,

representing multiple samples from the same individual.

Call in relevant libraries
library(doParallel) # Parallel processing
library(MUVR2) # Machine Learning modeling

Call in the "freelive2" data from the MUVR2 package
data("freelive2")

It is often practical to separate between nCore (i.e. the number of computer cores to use for

processing) and nRep (the number of repetitions in the MUVR2 algorithm). Performing nCore <-

detectCores() - 1 uses all but one thread (kept for everyday computer usage), which makes for

efficient processor use. Performing instead nCore <- detectCores() will result in slightly more

efficient CPU usage for calculations, but leave you with practically no possibility to use your

computer for other tasks during calculations. nRep is usually set to a multiple of nCore for efficient

processor usage. For initial “quick’n’dirty” modeling (as in all the examples we show below), we

normally set nRep = nCore. For final processing, we often set nRep between 20 and 50 and check

modeling convergence using the plotStability() function (see below). Depending on your

parameter settings and size of data, the modeling may take minutes or even hours. Initial modeling

using “quick’n’dirty” settings is thus encouraged to get a feel for the modeling potential before final

processing.

We normally set the number of outer cross-validation segments between 6-8, with higher number of

segments when there are fewer observations to increase the ratio of observations used for model

training. A general recommendation is also to ensure that all classes are present in all segments (by

ensuring that nOuter is not larger than the smallest class size within the target variable). The variable

ratio (varRatio) parameter governs the proportion of variables kept for iteration of the recursive

variable elimination in the inner loop. We normally start out low (varRatio = 0.6-0.75) and increase

towards 0.8-0.9 for final processing.

Set method parameters
nCore <- detectCores() - 1 # Number of processor threads to use
nRep <- nCore # Number of MUVR2 repetitions
nOuter <- 8 # Number of outer cross-validation segments
varRatio <- 0.75 # Proportion of variables kept per iteration
method <- 'PLS' # Selected core modeling algorithm

After setting parameters, it is time to initialize parallel processing and perform the actual modeling.

Set up parallel processing
cl <- makeCluster(nCore)
registerDoParallel(cl)

Perform modeling
regrModel <- MUVR2(X = XRVIP2,
 Y = YR2,
 nRep = nRep,
 nOuter = nOuter,
 varRatio = varRatio,
 method = method)

1.49 mins using 7 threads on a laptop computer with 11th Gen Intel I Core I i7 -1185G7 processor
with 8 cores and 31.7 Gb internal memory.
Stop parallel processing
stopCluster(cl)

6

After the model finishes running, we can check the prediction performance, hyperparameter

selection and number of variables selected by ‘min’, ‘mid’, ‘max’ consensus models (see below).

regrModel$fitMetric # Look at fitness metrics for min, mid and max models
$R2
[1] 0.9196686 0.9317392 0.9359603
$Q2
[1] 0.4311033 0.4140635 0.4633704

regrModel$nComp # Number of components for min, mid and max models
min mid max
3 3 3

regrModel$nVar # Number of variables for min, mid and max models
min mid max
47 85 152

cbind(YR2, regrModel$yPred) # Actual exposures side-by-side with min, mid and max predictions
YR2 min mid max
1_ID1 11.0666667 22.329490 21.730449 23.196849
2_ID100 12.1000000 8.743642 7.655014 8.654301
3_ID101 57.7333333 64.920179 78.548436 82.403806
… … … … …

In the validation plot generated by plotVAL(regrModel)(Figure 3), light grey lines represent

validation performance for the individual inner segments as a function of the number of variables in

the recursive variable elimination procedure. The darker grey lines represent inner segment

validation curves averaged over each repetition. Similarly, the black line represents validation curves

averaged over all repetitions. The “quick’n’dirty” model with few repetitions (Figure 3A) and the final

model (Figure 3B) show similar validation trends, although with improved resolution in the final

model.

Minimal-optimal (‘min’) and all-relevant (‘max’) models represent the outer borders of variable

selections where the validation performance is optimal (in this case represented by root mean

squared error of prediction (RMSEP)). This is in practice determined as having validation

performance within a certain percentage of slack allowance from the actual minimum (default 5%),

when rescaling the fitness range from the worst to the best fitness to {0, 1}. The minimal-optimal

model thus represents the minimal variable set required for optimal method performance, i.e. with

the strongest predictors e.g. suitable for biomarker discovery. The all-relevant model instead

represents the data set with all variables with relevant signal-to-noise in relation to the research

question: i.e. the strongest predictors and, additionally, variables with redundant but not erroneous

information. The ‘mid’ model represents a trade-off between the ‘min’ and ‘max’ model and is found

at the geometric mean.

plotVAL(regrModel)

7

Figure 3. Validation plots of MUVR2-PLS models in the regression analysis using different settings, plotted by plotVAL().

The left figure (A) uses nRep = 7, varRatio = 0.75, nOuter = 8 and the right figure (B) uses nRep = 35, varRatio = 0.85,

nOuter = 8.

For regression analysis, the plotMV() function plots the actual target variable on the x-axis and

predictions on the y-axis (Figure 4). Predictions from individual repetitions are represented as

smaller, grey dots, whereas overall predictions are represented by larger black dots. This provides an

overview of prediction precision between repetitions. Inlaid is validation R2 obtained from overall

consensus model (i.e. a model using all data for training and prediction, but with the number of

components and variable selections obtained from MUVR2) and Q2 obtained from MUVR2 modeling.

For convenience, the MUVR2 package also provides a PLS biplot function, biplotPLS() for visual

interpretation of PLS models by giving an overview of observation scores and variable loadings

(Figure 5). In the present case, the symbols are color coded (grey scale) according to their exposure

(xCol = YR2). To avoid cluttering, score and loading labels were omitted.

plotMV(regrModel, model = 'min') # Look at the model of choice: min, mid or max
PLSfit = regrModelFitplsFitMin # Extract consensus PLS model
biplotPLS(PLSfit, comps = 1:2, xCol = YR2, labPlSc = FALSE, labPlLo = FALSE)

Figure 4. Comparison between actual and predicted

target variable of MUVR2-PLS in the regression

analysis, plotted by plotMV()

Figure 5. Scores and loadings of variables selected by the

minimal-optimal consensus model of MUVR2-PLS in the

regression analysis, plotted by biplotPLS()

A

B

8

The stability plot from plotStability() for regression analysis generates three subplots (Figure 6): (i)

The number of selected variables in each repetition, as well as the cumulative average over the

repetitions; (ii) The proportion of selected variables shows the ratio of the final variable selection

found in each repetition and cumulatively, averaged over the number of repetitions; (iii) Q2 per

repetition and cumulatively. For all subplots, there may be some variability between individual

repetitions due to the random sampling of observations into the cross-validation segments.

However, cumulative averages converge rapidly, and we normally observe convergence within 20-50

observations or even faster, depending on the strength of the association between predictor and

target variables. If the stability plot shows high variability, especially for the cumulative curves, a

higher nRep argument setting may be warranted.

plotStability(regrModel, model = 'min')

Figure 6. Stability plots under the minimal-optimal consensus model of MUVR2-PLS in the regression analysis, plotted by

plotStability().

The plotVIRank() function generates a boxplot of the ranks-per-repetition (lower is better) of a

number of top-ranked variables (argument n specific the number of variables) (Figure 7) or the

variables that are automatically selected (argument model = ‘min’, ‘mid’ or ‘max’). This output

generates an intuitive overview of which variables are reproducibly selected with low rank, which

may thus be the strongest predictors of the target variable. For the sake of readability of variable

names, the following VIRank plot was truncated to showing the top 20 predictors. However, the

default is to show the number of variables corresponding to either the ‘min’, ‘mid’ or ‘max’ selection.

plotVIRank(regrModel, n = 20)

9

Figure 7. Variable importance ranks under the minimal-optimal consensus model of MUVR2-PLS in the regression analysis,

plotted by plotVIRank(). Truncated to top 20 variables for the sake of readability of variable names.

The selected variables can also be obtained using getVIRank():

getVIRank(regrModel, model = 'min') # Extract most informative variables: Lower rank is better
order name rank
HPX283.9974.1.2967925 1 HPX283.9974.1.2967925 3.903061
RNX262.0145.2.1115243 2 RNX262.0145.2.1115243 39.155612
RNX228.063.2.7376049 3 RNX228.063.2.7376049 76.359694
RPX492.2371.7.5598454 4 RPX492.2371.7.5598454 79.339286
...

Note that regression using Random forest can easily be achieved by changing the ‘method’

argument into method = ”RF” and regression using elastic net will be achieved by the MUVR2_EN()

function (see section 4.2).

4.2. Classification analysis

The general outline of a classification analysis follows the same approach as the regression analysis

described above, including considerations for parameter settings, albeit with the difference that the

Y target variable consists of factor levels rather than numeric values. We will walk through a MUVR2

classification analysis using elastic net (EN) core modeling. We will use the “mosquito” dataset,

which has data on microbiota composition data (OTU data from 16S rRNA analysis) from 29

Anopheles gambiae mosquitoes sampled from 3 different villages in western Burkina Faso (Buck et al

2016).

First, we set up libraries, data and parameters as in section 4.1: We call in relevant libraries and

typing data("mosquito") will load 2 objects: A categorical ‘Yotu’ target variable (three levels, i.e.

villages) for 29 samples and; A numeric ‘Xotu’ matrix, consisting of 1678 16S rRNA operational

taxonomic units (OTU) measured for the 29 samples.

Call in relevant libraries
library(doParallel) # Parallel processing
library(MUVR2) # Machine Learning modeling

Call in the "mosquito" data from the MUVR2 package
data("mosquito")

We then check for the number of observations per class to make sure nOuter is not bigger than the
number of observations of the smallest class.

10

Check the number of observations per class
table(Yotu) # As a general principle, nOuter should be ≤ n of the smallest class (i.e. 8)

Yotu
VK3 VK5 VK7
10 11 8

The elastic net in the MUVR2 algorithm is slightly different from PLS and RF. First, we use the
MUVR2_EN() function instead of MUVR2() to perform the modeling and we do not need to specify a
‘method’ since MUVR2_EN() only performs elastic net (EN) core modeling. Second, EN core modeling
in MUVR2 does not perform the variable selection by recursive variable elimination similar to
MUVR2-PLS and MUVR2-RF. Instead, it ranks variables by the proportion of times that variables had
a non-zero beta coefficient across the calibration set consensus models (i.e. over a total of nOuter x
nRep models). Variables that had non-zero beta coefficients more frequently are ranked as more
important. Finally, MUVR2_EN() does not report the selected number of variables directly since the
variable selection requires some manual assessment (see below).

We can now set parameters, initialise parallel processing and perform the actual modeling. Note
that to do a classification, you should specify the argument DA = TRUE, where DA stands for
discriminant analysis. However, for convenience, the DA argument can be omitted and MUVR2() or
MUVR2_EN() will automatically perform a classification analysis if the Y vector is either in factor or
character format (or a regression analysis if the vector Y is in numeric format).

Set method parameters
nRep <- 35 # Number of MUVR2 repetitions
nOuter <- 8 # Number of outer cross-validation segments

Set up parallel processing using doParallel
nCore <- detectCores() - 1 # Number of processor threads to use
cl <- makeCluster(nCore)
registerDoParallel(cl)

Perform modeling (It may take some time to run).
classModel <- MUVR2_EN(X = Xotu,
 Y = Yotu,
 nRep = nRep,
 nOuter = nOuter,
 varRatio = varRatio,
 DA = TRUE)

Stop parallel processing
stopCluster(cl)

The reason nVar is not reported using MUVR2_EN() is that variables are not selected from recursive
elimination as in MUVR2-PLS and MUVR2-RF. There are thus no continuous validation curves from
which to estimate prediction performance. Instead, there are two options for variable selection in
MUVR2-EN, using the getVar() function: In the first approach (option = ”fitness”), an analogous
validation curve is generated from the smoothing of the nRep x nOuter prediction performances for
each test set. Using this approach, the ‘min’, ‘mid’ and ‘max’ selections are decided similarly as for
MUVR2-PLS and MUVR2-RF (i.e. validation performance within a certain percentage of slack
allowance from the actual minimum (default robust = 5%).

However, this dependence on individual data points rather than continuous curves may result in the
smoothed validation curve having uneven coverage over the range of selected variables. Users
should therefore first visualize the validation curve using plotVAL(). For example, in Figure 8A, the
validation plot (nRep = 35, nOuter = 8) shows that the ‘min’, ‘mid’ and ‘max’ selections all reside in
places where the density of data points is not the highest. However, although it is obvious that
higher numbers of selected variables are under-represented, the validation curve from the model
above with the 280 underlying fitness estimates looks as expected with a well-defined global
minimum (U-shape). Additionally, in some scenarios, the smoothed curve may show strange

11

behavior, not conforming to the expected U-shape. For example, a corresponding “quick’n’dirty”
model (nRep = 5, nOuter = 5) for the same data clearly does not produce a similar U shape and does
not have a sufficient amount of fitness estimates to serve as grounds for producing a reliable
validation curve (Figure 8B). This suggests that the number of repetitions (and possibly nOuter
segments) should be increased.

classModel <- getVar(classModel,
 option = "fitness",
 robust = 0.05,
 outlier = "none")

plotVAL(classModel)

Figure 8. Validation plots of MUVR2-EN models using the smooth curve method for variable selection. The left figure (A)

uses nRep = 35, nOuter = 8 and the right figure (B) uses nRep = 5, nOuter = 5.

To further explore the ‘min’, ‘mid’ and ‘max’ selections, users can rerun getVar() with different
allowances for validation performance (changing the robust argument from its default 0.05). In
addition, the curve smoothing is sensitive to outliers, which can result in “squiggly” curve shapes. In
this case, users can both choose to automatically detect and remove outliers using either
interquartile range or the residuals from generalized additive models (specifying the argument
outlier = “IQR” or outlier = ”residual” rather than its default outlier =“none”) and also adjust the
amount of smoothing (decreasing the span argument from its default 1) in getVar().

If well-defined validation curves can still not be achieved by increasing the number of repetitions or
nOuter, by removing outliers or modifying the degree of smoothing, this first approach is not viable
and we instead suggest a second approach for selecting variables, using the argument option
= ”quantile”. Contrary to the standard MUVR2 approach and the above described "smoothed"
approach, this method disregards the modeling performance and instead selects ‘min’, ‘mid’ and
‘max’ directly from the distribution of the number of selected variabels (i.e. non-zero beta
coefficients) across the nRep x nOuter calibration set models. The ‘mid’ option always corresponds
to the median, whereas the argument quantile allows the user to choose the number of selected
variables for ‘min’ and ‘max’ based on quantiles. For example, based on the same modeling result as
Figure 8A, Figure 9 used option = ”quantile”, quantile = 0.25 in getVar(), which gives the first quartile
as the ‘min’, median as the ‘mid’ and the third quartile as the ‘max’ number of selected variables.
This concentrates the variable selections to the positions where the density of the number of
variables selected by nRep x nOuter calibration set models is the highest although at the cost of not
simultaneously incorporating overall prediction performance in the assessment.

classModel <- getVar(classModel,
 option = "quantile",
 quantile = 0.25,

A

B

12

 outlier = "none")
plotVAL(classModel)

Figure 9. Validation plots of MUVR2-EN models using the quantile method for variable selection (based on the same

modeling result as Figure 8A).

We can then look at the final model outputs, similar to the previous regression example. However,
note that classification analysis uses different fitness metrics than regression (with balanced error
rate (BER) as default). An important difference in MUVR2-EN compared to MUVR2-PLS and MUVR2-
RF is that we only have one BER and one predicted target variable for the model instead of one each
for ‘min’ ‘mid’ and ‘max’. This is because there is no recursive variable elimination for MUVR2-EN
and nVar is selected after model building.

classModel$ber # Balanced error rate for min, mid and max models
0.1356061

classModel$nVar # Number of variables for min, mid and max models
min mid max
10 39 79

cbind.data.frame(Yotu, classModel$yClass) # Actual class side-by-side with min, mid and max
predictions
Yotu classModel2$yClass
1 VK3 VK3
2 VK3 VK3
3 VK3 VK3
4 VK3 VK3
… … …

classModel$varTable
Number of times a variable is being selected across nRep*nOuter calibration set models
OTU_28 OTU_4133 OTU_400 OTU_1620 OTU_1013 OTU_243 OTU_134 OTU_337 OTU_26 OTU_1624 OTU_1679 …
280 263 225 224 223 210 191 189 184 179 178 …

The prediction plot for classification analysis is different from its regression counterpart. The

plotMV() function generates what we call a “swim lane” plot, where each lane represents

predictions for an observation (Figure 10). Predictions are color-coded and jittered by class. The

smaller dots represent predictions from individual repetitions and the larger dots represent class

prediction averaged over all repetitions. Misclassified predictions are circled. The spread in the

individual predictions gives an intuitive graphical overview of prediction precision. In MUVR2-PLS

13

and MUVR2-RF, using the model argument, the users can easily switch between ‘min’, ‘mid’ and

‘max’ models.

plotMV(classModel)
In MUVR2-PLS and MUVR2-RF, you can specify min, mid or max using the ‘model’ argument.

Figure 10. Class prediction probability for observations of MUVR2-EN in the classification analysis, plotted by plotMV()

The stability plot now gives misclassifications and BER instead of Q2 in the bottom part of the plot

(Figure 11), but is otherwise similar to the regression stability plot.

plotStability(classModel, model = 'mid')

Figure 11. Stability plots under the 'mid' variable selection of MUVR2-EN in the classification analysis, plotted by

plotStability().

14

Selected variables can be obtained similar to the regression analysis using plotVIRank() and

getVIRank(). Note that plotVIRank() in MUVR2-EN gives a different plot than MUVR2-PLS and

MUVR2-RF, since variable selection in MUVR2-EN is based on the variables that have non-zero beta-

coefficient over nOuter segments and nRep repetitions rather than recursive variable elimination. In

Figure 12, each row represents one calibration set model (nRep x nOuter models) and each column

represents a variable. Red denotes that the variable was selected (i.e. had a non-zero beta

coefficient) in the corresponding calibration set model. Calibration set models are ordered from

selecting the most to the fewest variables and variables are sorted based on selection rates. Despite

a wide variability in the number of selected variables, a core set of variables was systematically

selected.

plotVIRank(classModel, model = 'mid', maptype = "heatmap")

Figure 12. Variable importance ranks under the 'mid' variable selection of MUVR2-EN in the classification analysis, plotted

by plotVIRank()

getVIRank(classModel, model = 'mid') # Extract most informative variables: Lower rank is better
order name rank
OTU_28 1 OTU_28 1.0
OTU_4133 2 OTU_4133 2.0
OTU_1620 3 OTU_1620 3.0
OTU_400 4 OTU_400 4.0
… … … …

4.3. Dealing with repeated samples

In the regression example in section 4.1, we have used the ”freelive2” data, where the observations

are from 58 different individuals, i.e. with one sample per individual. What if there are more than

one sample for some individuals in the data? Standard procedures for cross-validation will not take

the this into account during the division of data into cross-validation segments (folds). Consequently,

there is a high likelihood of overfitting to the data by having observations from the same individual

present in both model training, validation and/or testing segments. To reduce such overfitting,

MUVR2() and MUVR2_EN() can use the ID argument to ensure that samples from the same

individual are always kept together in the cross-validation segments.

An example is given here to add complexity of repeated samples using the “freelive” data, which is

similar to “freelive2” data but including more than one sample per individual. First, we set up

libraries, data and parameters as in section 4.1: We call in relevant libraries and typing

15

data("freelive") will load 3 objects: A continuous ‘YR’ target variable with wholegrain rye

consumption for 112 samples from 58 individuals (some individuals did not provide repeated

samples); A numeric ‘XRVIP’ matrix, consisting of 1147 metabolic features for the 112 samples; An

‘IDR’ vector with identifiers of the individuals that informs which samples are from which individual.

To ensure that all observations per individual are co-sampled into the same cross-validations

segment, we can simply add the ID argument to the MUVR2() function call from section 4.1.

Set method parameters
nCore <- detectCores() - 1 # Number of processor threads to use
nRep <- nCore # Number of MUVR2 repetitions
nOuter <- 8 # Number of outer cross-validation segments
varRatio <- 0.75 # Proportion of variables kept per iteration
method <- 'PLS' # Selected core modeling algorithm

cl <- makeCluster(nCore)
registerDoParallel(cl)
regrModel <- MUVR2(X = XRVIP,
 Y = YR,
 ID = IDR,
 nRep = nRep,
 nOuter = nOuter,
 varRatio = varRatio,
 method = method)
stopCluster(cl)

4.4. Multilevel analysis

In the example in section 4.3, there was a dependency between observations due to repeated

sampling. However, this represented to measurement occasions, both under free-living conditions.

Since it was not related to a systematic effect (such as before-vs-after intervention or treatment A-

vs-B in a crossover design), the dependency was managed by co-sampling dependent observations

into the same cross-validation segments using the ID argument. However, sample dependency may

also be related to such a systematic effect. Analysing such data using standard classification

modeling will result in both (i) having observations from the same individual both in model training

and testing if not ensuring co-sampling (as in the previous example using the ID argument) and, in

addition, (ii) conflation of between-individual effect and treatment-related systematic within-

individual effects. This sample dependency by experimental unit needs to be addressed in a different

manner, e.g. by so-called multilevel ML analysis (Westerhuis et al, 2010). This should, however, not

be confused with the multilevel model concept in classical statistics

(https://en.wikipedia.org/wiki/Multilevel_model).

In the rationale building up to this approach, a standard machine learning-based classification

analysis can be viewed as a multivariate extension of an unpaired t-test, i.e., comparing systematic

differences between two groups although analysing multiple predictor variables simultaneously.

Using the same analogy, a multilevel model would correspond to a paired multivariate t-test, i.e.

with pairwise linked samples (Westerhuis et al, 2010).

In practice, multilevel modeling is not a separate modeling technique, but rather a clever data pre-

processing trick to manage sample dependency: Instead of modeling the original data from two

discrete time points (or two treatments) as separate observations, an effect matrix is instead

calculated as: EM = XB – XA (or EM = log(XB / XA)) which in turn is modeled by regression using a

dummy variable for the Y target variable. In the MUVR2 package, multilevel analysis is invoked by

setting the ML argument to TRUE. The user must manually perform pre-processing to generate and

supply the effect matrix as predictors (Figure 13). The Y target variable is deliberately left out and

https://en.wikipedia.org/wiki/Multilevel_model

16

calculated internally. Within the MUVR2 algorithm, further data pre-processing will be done to set

up the multilevel analysis:

Figure 13. Illustration of the multilevel analysis n MUVR2. To make a multilevel analysis using MUVR2, the user must

pre-process the original data into an effect matrix (EM). MUVR2 is then called using the parameters X=EM and ML=TRUE.

A new predictor matrix and a dummy Y target variable will then be calculated internally within MUVR2.

In this multilevel example using MUVR2-RF, the “crisp” dataset is used, which has untargeted plasma

metabolomics data from two different dietary interventions delivered to 21 subjects in a cross-over

design, i.e., where each participant received both diets. There is thus a clear systematic sample

dependency (by individual) advocating multilevel analysis. Typing data("crisp") will load an effect

matrix (‘crispEM’) with 21 rows (one row per individual) and 1508 columns, consisting of differences

in area-under-the-curve values (AUC) of metabolic features measured after two different breakfast

meal interventions.

Comments and clarification of code and results have been elaborated in the regression and

classification analysis, and here we will only add explanations for the parts that are different in

multilevel analysis.

Call in relevant libraries
library(doParallel) # Parallel processing
library(MUVR2) # Machine Learning modeling

Call in the "crisp" data from the MUVR2 package
data("crisp")

Set method parameters
nCore <- detectCores() - 1 # Number of processor threads to use
nRep <- nCore # Number of MUVR2 repetitions
nOuter <- 8 # Number of outer cross-validation segments
varRatio <- 0.75 # Proportion of variables kept per iteration
method <- 'RF' # Selected core modeling algorithm

Set up parallel processing
cl <- makeCluster(nCore)
registerDoParallel(cl)
Perform modeling
MLModel <- MUVR2(X = crispEM,
 ML = TRUE,
 nRep = nRep,
 nOuter = nOuter,
 varRatio = varRatio,
 method = method)

Cases

Controls

Original data

Cases-Controls

Controls-Cases

X Y

-1

+1

Multilevel Analysis

Cases-Controls

Effect Matrix

17

Stop parallel processing
stopCluster(cl)

Examine model performance and output
MLModel$nVar # Number of variables for min, mid and max models
min mid max
5 6 7

MLModel$miss # Misclassified observations
min mid max
8 8 8

MLModel$ber
min mid max
0.1904762 0.1904762 0.1904762

MLModel$fitMetric # Fitness metrics for min, mid and max models dummy regressions
$R2
min mid max
0.7382263 0.7560964 0.7495876

$Q2
min mid max
0.4265355 0.3909502 0.3860555

MLModel$yPred # Multilevel predictions from min, mid and max models
min mid max
1_ID1 -0.5804444 -0.5025397 -0.55692063
2_ID2 -0.7255238 -0.6231111 -0.63400000
3_ID3 -0.1409365 -0.1821270 -0.22317460
4_ID4 -0.5986032 -0.7677460 -0.72241270
… … … …

MLModel$yClass # Predicted class from min, mid and max models
min mid max
1_ID1 -1 -1 -1
2_ID2 -1 -1 -1
3_ID3 -1 -1 -1
4_ID4 -1 -1 -1
… … … …

plotVAL(MLModel)

Figure 14. Validation plots of MUVR2-RF models in the multilevel analysis, plotted by plotVAL().

18

The validation plot from plotVAL() (Figure 14) shows a similar behaviour as for regression. The

multilevel prediction plot from plotMV() (Figure 15) is different from both the regression line plot

and the classification swim lane plot. The upper and lower half of the prediction plot represent the

predicted Y target variable for the positive and negative half of the effect matrix, respectively. The

expected Y values are the dummy values -1 for the upper half and +1 for the lower half and

predictions have a decision boundary at Y = 0. Consequently, 4 out of 21 individuals are misclassified.

The MLModel$miss (number of miss classifications) will however report 8 misses since the value is

based on two instances per individual (i.e. upper and lower half).

plotMV(MLModel, model = 'min') # Look at the model of choice: min, mid or max

Figure 15. Comparison between the expected and predicted target variable of MUVR2-RF in the multilevel analysis, plotted

by plotMV()

The stability plot from plotStability() (Figure 16) is similar to both regression and classification and

will provide Q2 (for the dummy regression), number of misclassification and BER both per repetition

and cumulative.

plotStability(MLModel, model = 'min')

19

Figure 16. Stability plots for the minimal-optimal (‘min’) MUVR2-RF model in the multilevel analysis, plotted by

plotStability().

The plotVIRank() function generates a similar boxplot (Figure 17) as MUVR2-PLS in section 4.1 and

the getVIRank() function generates similar output as MUVR2-PLS in section 4.1 and MUVR2-EN in

section 4.2

plotVIRank(MLModel, model = 'min')

Figure 17. Variable importance ranks under the minimal-optimal (‘min’) MUVR2-RF model in the multilevel analysis,

plotted by plotVIRank()

20

getVIRank(MLModel, model = 'min') # Extract most informative variables: Lower rank is better
order name rank
RP299.294404650545@676.121968 1 RP299.294404650545@676.121968 28.24362
RP227.587118694585@308.198 2 RP227.587118694585@308.198 863.95408
RP176.070629478804@298.882 3 RP176.070629478804@298.882 944.25000
RP286.282164509847@675.669952 4 RP286.282164509847@675.669952 971.42092
RP335.291268856479@702.010968 5 RP335.291268856479@702.010968 1024.52551

4.5. Recap

The MUVR2 algorithm provides PLS, RF and EN core machine learning methods. To avoid any

confusion, any of the three methods can be used for regression, classification or multilevel analysis.

Moreover, all models are equally capable of addressing repeated measures (i.e. segment sampling

by ID rather than observations) using the ID argument. Importantly, MUVR2-PLS and MUVR2-RF

(using the MUVR2() function) perform variable selection by recursive variable elimination while

building the models, whereas MUVR2-EN selects variables based on how often they were selected

(i.e., had non-zero beta coefficients) across the nRep x nOuter calibrations set models. Consequently,

MUVR2-PLS and MUVR2-RF gives predictions and fitness for ‘min’, ‘mid’ and ‘max’ respectively and

MUVR2-EN gives only one prediction and fitness (although it still gives ‘min’, ‘mid‘ and ‘max’ variable

selections). Moreover, the validation plots generated by plotVAL() and the plot for variable ranks by

plotVIRank() will be similar for MUVR2-PLS and MUVR2-RF regardless of problem type, whereas

plotVAL() on MUVR2-EN will give validation plots based on either smoothed validation fitness curves

or quantiles. Additionally, the final variable selection in MUVR2-EN will use the getVar() function.

plotVIRank() on MUVR2-EN will give a simple heat map that shows which variables are selected in

which calibration set models.

5. Covariate adjustment

In the upgraded MUVR2 package, MUVR2-EN provides covariate adjustment by suppressing

regularization. Importantly, similar covariate adjustment is not available in MUVR2-PLS or MUVR2-RF.

In practice, to achieve such adjustment, users can quite simply provide the argument keep =

c(“names of the variables”). Note that the variable names need to correspond exactly to column

names in the predictor (X) matrix. After covariate adjustment, the ranks of the variables that are

associated with both the target variable and the covariate will decrease. An example based on

section 4.2 in this tutorial is given below.

In that example, using MUVR2-EN to associate mosquitoes’ microbiota profiles to village of capture

(nRep = 35, nOuter = 8), we can see how many times a variable had non-zero beta coefficient across

nRep x nOuter calibration set models using classModel$varTable. Using getVIRank(classModel),

we can also examine the ranks.

getVIRank(classModel, model = 'max')

order name rank

OUT_28 1 OUT_28 1.0

OTU_4133 2 OTU_4133 2.0

OUT_400 3 OUT_400 3.0

OTU_1620 4 OTU_1620 4.0

… … … …

OTU_1175 76 OTU_1175 76.5

OTU_1970 77 OTU_1970 76.5

OUT_100 78 OUT_100 78.0

OTU_5643 79 OTU_5643 79.0

21

To exemplify the use of the keep argument (albeit not grounded in an actual biological research

question), we will artificially select one of the predictor variables as a covariate and then observe

how the rank of other predictor variables that correlate with the chosen covariate change. Let’s first

select a covariate to adjust for. We emphasize that this would normally be selected based on a

hypothesis of the underlying causal structure. However, in this case we don’t have such covariates at

hand and we instead choose one among the predictors to represent a potential covariate.

In this example, we have selected the predictor variable, “OUT_100”, that is within the ‘max’

variable selection (by quantile) in MUVR2-EN, but not within the top-ranked predictors (see rank list

above). In fact, covariates should not be too strong predictors of the target variable, which would

lead to a Hauck-Donner effect (Yee, 2022) and in practice throw an error from the algorithm.

We can then use the cor() function to identify which predictors among the ‘max’ predictors are

strongly correlated with “OUT_100”. Using cor.test(), we can also get a p-value for the correlation.

Through this procedure, we learn that the predictor “OUT_1962” correlates strongly (r = 0.83, p <

0.001) with the covariate.

Extract the ‘max’ predictors
max_predictors <- Xotu[, classModelVarmax]

Calculate the correlations between the ‘max’ predictors and "OUT_100"
max_predictor_cor <- cor(max_predictors)[, "OTU_100"]

Extract the name of the predictors that are strongly correlated (|r| > 0.75) with "OUT_100".
max_predictor_cor[abs(max_predictor_cor) > 0.75]
"OTU_1962" "OTU_100"
0.8282541 1.0000000

Extract the p value for the correlation
cor.test(Xotu[, "OTU_100"], Xotu[, "OTU_1962"])$p.value
2.923568e-08

We can now make a new model using "OTU_100" as a covariate (It may take some time to run):

nCore <- detectCores() - 1 # Number of processor threads to use

cl <- makeCluster(nCore)
registerDoParallel(cl)

classModel2 <- MUVR2_EN(X = Xotu,
 Y = Yotu,
 keep = c("OTU_100"),
 nRep = 35,
 nOuter = 8,
 DA = TRUE)
stopCluster(cl)

Now we can observe that the variable importance rank of “OTU_1962” drops from number 20

without covariate adjustment to 703 with covariate adjustment. Across the 280 (nRep x nOuter)

calibration set models it was selected 0 times with adjustment, comparing to 150 times without

adjustment. However, please note that actual numbers of ranks and selections may fluctuate

between repetitions due to stochastic effects.

6. Resampling tests

Permutation tests can be used to construct formal hypothesis tests and get a p-value of the actual

analysis (Lindgren, et al, 1996). In brief, permutation tests are conducted by randomly sampling the

target variable without replacement (permutation) and then modeling the permuted target variable

22

using the original predictors. This modeling of random responses is repeated a number of times and

statistical significance is obtained by comparing the actual modeling result to the permutation

distribution, representing the null-hypothesis distribution.

In our example here, we have upgraded the permutation tests to resampling tests. In the simulation
of a null-hypothesis target variable, effectively representing (pseudo-)random conditions, we have
added additional variability compared to standard permutations. The rationale comes from the
observation that model predictions are not bounded by the exact values or proportions of the actual
target variable. We argue that the null-hypothesis target variable should similarly not have to be an
exact reproduction of the actual target variable in random order. Thus, instead of obtaining the
permuted target variable from sampling without replacement, we obtain the resampled target
variable using random draws from its empirical distribution. In regression, sampling from the
empirical distribution will thus result in numeric values not necessarily observed in the actual target
variable but representing the same underlying distribution. In classification, this represents sampling
the target variable based on class probabilities (i.e. sampling the actual target variable with
replacement). Consequently, the null-hypothesis fitness distribution no longer exactly represents
permutations of the actual target variable and, due to the sampling from empirical distributions, we
refer to this new type of test as resampling tests instead of permutation tests. Resampled target
variables can be generated using the H0_test() function and specifying the argument type =
”resampling”.

Here, we will show a resampling test of a random forest classification analysis of the “mosquito”

data.

We first generate the actual modeling fitness using the actual target variable.

Call in relevant libraries
data("mosquito")

Declare modeling parameters
nCore <- detectCores() - 1
nRep <- 2 * nCore # Number of repetitions per actual model and resamplings
nOuter <- 5 # Number of validation segments
varRatio <- 0.75 # Proportion of variables to keep per iteration during variable selection
method <- 'RF' # Core modeling technique
model <- 1 # 1 for min, 2 for mid and 3 for max

Compute actual model and extract fitness metric; Approx 0.5 min
cl <- makeCluster(nCore)
registerDoParallel(cl)
MUVR2_actual <- MUVR2(X = Xotu,
 Y = Yotu,
 nRep = nRep,
 nOuter = nOuter,
 varRatio = varRatio,
 method = method)

actualFit <- MUVR2_actual$ber[model]
stopCluster(cl)

actualFit
min
0.305303

Then we obtain the resampled modeling fitness distribution using the resampled target variable. To

reduce computation time in this example, we set the number of resamplings to 25. The other model

parameter settings should ideally be identical between the actual model and the resampled models.

which is the default when performing resampling tests by the H0_test() function. However, to

decrease the computational cost, compromises sometimes need to be made and we frequently

reduce the nRep, nOuter and varRatio parameter settings (effectively resulting in a broader null-

23

hypothesis distribution and larger p-values, thus “erring on the side of caution”). This can easily be

achieved by changing those arguments in the call to the H0_test() function.

nResample <- 25 # Number of resamplings (here set to 25 for illustration; normally set to ≥100)

cl <- makeCluster(nCore)
registerDoParallel(cl)

resamplings <- H0_test(MUVR2_actual, n = nResample, type = 'resampling')
stopCluster(cl)

resampleFit <- resamplings[, model]

resampleFit # the resampled fitness
permutation 1 permutation 2 permutation 3 permutation 4 permutation 5 permutation 6 permutation 7
0.8128205 0.7285714 0.7016687 0.6840909 0.5833333 0.6111111 0.7017544
permutation 8 permutation 9 permutation 10 permutation 11 permutation 12 permutation 13
0.7746032 0.7350427 0.5648148 0.7070707 0.5692308 0.5288462
permutation 14 permutation 15 permutation 16 permutation 17 permutation 18 permutation 19
0.6102564 0.7449495 0.6462121 0.6433566 0.6787879 0.6259259
permutation 20 permutation 21 permutation 22 permutation 23 permutation 24 permutation 25
0.6222222 0.8141026 0.8641026 0.6666667 0.4962121 0.5833333

We offer 3 different types of statistical tests to compare the actual modeling fitness to the

resampled fitness distribution and to calculate a p-value: i) An empirical test, where p-values are

calculated from the smoothed resampled fitness distribution as the cumulative probability. ii) A t-

test, which assumes that the resampled fitness distribution follows a t-distribution and calculates

the cumulative probability. iii) A non-parametric test, which uses the rank order of the actual fitness

and the resampled fitness distribution, as performed by Szymańska et al (Szymańska et al., 2012). In

general, we recommend the empirical test since the resampled fitness distribution frequently does

not have a Gaussian distribution and the rank-order-based non-parametric test is limited in

resolution and therefore unable to assess p < (1 / nResample). Simulations showed that the

empirical distribution-based approach generated p-values similar to those obtained from a t-

distribution when the distribution was Gaussian (data not shown) and was also able to generate p-

value estimates from non-Gaussian distributions that better correspond to intuitive assessment

compared both to the rank order-based and t-distribution-based approaches.

The option of statistical tests can be specified by the type argument (type=’smooth’ for empirical test;

type=’t’ for t-test; type=’rank’ for rank-order based non-parametric test) in the plotPerm() function,

which gives a visual illustration of the actual fitness, the resampled fitness distribution and the p-

value. We can generate plots using the different statistical tests by the code below (Figure 18A-C).

Empirical test based on smoothed curve from resampled fitness distribution (Figure 18A):
plotPerm(actual = actualFit, distribution = resampleFit, type = 'smooth', curve = TRUE, xlim = c(0, 1))

Parametric resampling test significance based on student’s t test (Figure 18B)
plotPerm(actual = actualFit, distribution = resampleFit, type = 't', curve = TRUE, xlim = c(0, 1))

Non-parametric resampling test significance based on the rank order of fitness values (Figure 18C):
plotPerm(actual = actualFit, distribution = resampleFit, type = 'rank', xlim = c(0, 1))

However, one needs to be cautious that sometimes not only the modeling using the actual target
variable can be driven by overfitting: the modeling itself may be effectively hindered depending on
the suitability between the machine learning method and the resampled (or permuted) data,
systematically affecting the null-hypothesis distribution. We can therefore visualize the expected
modeling fitness under null-hypothesis conditions using a reference distribution (Figure 18D), along
with the actual fitness and the resampled fitness distribution (Figure 18A-C). This reference
distribution is obtained by calculating the fitness directly from the resampled target variables, i.e.,
without any modeling or predictions, thereby effectively excluding any overfitting from this scenario.

24

This can be achieved by using the H0_reference() function, using the target variable (Y), the number
of resamplings (n) and desired performance metric (fitness) as arguments.

H0_reference(Y = Yotu, n = 1000, fitness = "BER")

If the resampled fitness distribution (‘resampleFit’ in the example above) resembles the reference

distribution (i.e. the expected null-hypothesis distribution; ‘H0_reference’ in the example) as in

Figure 18, it suggests that the modeling strategy does not contribute to overfitting. In this case, the

estimated p-value should convincingly reflect a model’s prediction performance. On the contrary, if

there is a systematic shift between the reference and the resampled fitness distributions, it suggests

that the modeling strategy does not fit the data, likely driven by overfitting.

Figure 18. Actual finesses, resampled fitness distributions and the reference distribution A. The p-value is calculated as the

cumulative probability based on a smoothed curve generated directly from the resampled fitness distribution. B. The p-value

is calculated as the cumulative probability from a t-distribution approximated from the resampled fitness distribution. C. The

p-value is calculated from the rank-order within the resampled fitness distribution (consequently with no need to calculate or

visualize curves). D. The reference distribution is obtained by calculating the fitness directly from the resampled target

variables without any modeling or predictions. BER, balanced error rate.

The above examples used BER as the fitness metric in classification analysis, but we could otherwise

have used the number of misclassifications, although it is less suitable for imbalanced classes. In

B

A

C

D

25

regression, we use Q2 as fitness metric. For multilevel analysis, we can use either BER, number of

misclassifications or Q2 as fitness metrics.

Note that it is normally useful to perform initial resampling tests with few repetitions to get an

indication of actual model fitness in relation to the resampled fitness distribution. Additional

repetitions can then easily be added to the permutation distribution at will to obtain better p-value

estimates.

6. Reference

Buck, M., Nilsson, L. K., Brunius, C., Dabiré, R. K., Hopkins, R., & Terenius, O. (2016). Bacterial
associations reveal spatial population dynamics in Anopheles gambiae mosquitoes. Scientific Reports,
6(1), 1-9.

Hanhineva, K., Brunius, C., Andersson, A., Marklund, M., Juvonen, R., Keski‐Rahkonen, P., ... &

Landberg, R. (2015). Discovery of urinary biomarkers of whole grain rye intake in free‐living subjects

using nontargeted LC‐MS metabolite profiling. Molecular nutrition & food research, 59(11), 2315-
2325.

Lindgren, F., Hansen, B., Karcher, W., Sjöström, M., & Eriksson, L. (1996). Model validation by
permutation tests: applications to variable selection. Journal of Chemometrics, 10(5‐6), 521-532.

Shi, L., Westerhuis, J. A., Rosén, J., Landberg, R., & Brunius, C. (2019). Variable selection and

validation in multivariate modelling. Bioinformatics, 35(6), 972-980.

Szymańska,E. et al. (2012) Double-check: Validation of diagnostic statistics for PLS-DA models in

metabolomics studies. Metabolomics, 8, 3–16.

Westerhuis, J. A., van Velzen, E. J., Hoefsloot, H. C., & Smilde, A. K. (2010). Multivariate paired data
analysis: multilevel PLSDA versus OPLSDA. Metabolomics, 6(1), 119-128.

Yee, T. W. (2022). On the Hauck–Donner effect in wald tests: Detection, tipping points, and

parameter space characterization. Journal of the American Statistical Association, 117(540), 1763-

1774.

Yu,L. et al. (2022) Missing Data Preprocessing in Credit Classification: One-Hot Encoding or

Imputation? Emerging Markets Finance and Trade, 58, 472–482.

