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1. What is MUVR2? 

The MUVR2 package contains algorithms for machine learning (ML; also known as multivariate 

modeling), aimed at finding associations between predictors (an X matrix of continuous and 

categorical variables) and a target variable (a Y vector, which is a continuous variable for regression 

or a categorical variable for classification). MUVR2 is particularly useful to cope with data that has 

large numbers of variables and few observations: MUVR2 constructs robust, parsimonious ML 

models that generalize well, minimize overfitting and facilitate interpretation of results through an 

automatic selection of variables-of-interest (Shi et al 2019). The operating principles of the MUVR2 

package originate from the MUVR package (still maintained at Carl Brunius / MUVR · GitLab) (Shi et 

al 2019). However, the package has expanded with more functionality and also undergone some 

change in syntax, which warranted a breakoff into a separated R package. 

From a technical perspective, MUVR2 is a statistical validation framework which incorporates 

minimally biased variable selection through recursive elimination performed within a repeated 

double cross-validation (rdCV) scheme. MUVR2 selects both minimal-optimal variables, i.e. the 

smallest set of highly informative variables-of-interest (useful e.g. for discovery of predictive 

biomarkers) and all-relevant variables, i.e. containing all variables-of-interesting that are relevant to 

describe the association between predictor and target variables (e.g. for biological interpretation 

and mechanistic investigation) (Shi et al 2019). MUVR2 supports several different data analytical 

problems, largely corresponding to different data types in the target and/or predictor variables: 

regression (Y is continuous), classification (Y is categorical) and multilevel (Y is a dummy variable and 

X is a so-called effect matrix, calculated from data with sample dependency, e.g. before/after or 

cross-over interventions). Please see additional explanations and details later in section 4.  

The MUVR2 package allows elastic net (EN) core modeling in addition to partial least squares (PLS) 

and random forest (RF). Through this addition, covariate adjustment can now be performed in the 

EN modeling. We further incorporated one-hot encoding (Yu et al., 2022), which entails re-coding 

categorical variables in the predictors onto multiple continuous variables coded as 1 or 0 for class 

membership. Furthermore, we upgraded the permutation test procedure into what we herein 

denote as resampling tests, which also include a reference distribution for assessing overfitting. The 

details of these functionalities are explained in section 5.  

The working principle of MUVR2-PLS and MUVR2-RF modeling is visualized in Figure 1. The original 

data is randomly subdivided into Outer segments. For each outer segment, the remaining (Inner) 

data is divided into Training and Validation sets, used for tuning model parameters. This procedure is 

repeated for successively fewer predictor variables, achieved through recursive ranking and 

backwards elimination. Each Outer segment is then predicted using an optimized consensus model 

trained on all Inner observations, ensuring that the holdout test set was never used for training or 

tuning of modeling parameters. The entire procedure is then repeated to reduce stochastic effects 

from the sampling of data into segments, thus improving modeling stability and performance. 

 

 

 

https://gitlab.com/CarlBrunius/MUVR
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Figure 1. Graphical representation (A) and pseudocode (B) of the 

MUVR2 algorithm for PLS and RF core modeling.  

 

The working principle of MUVR2-EN modeling is visualized in Figure 2. Differing from the working 

principle of MUVR2-PLS and MUVR2-RF, MUVR2-EN does not perform recursive ranking and 

backwards elimination and thus does not perform variable selection within the model building stage 

(Please see section 4.2 for further details).   

 

 

Figure 2. Graphical representation (A) and pseudocode (B) of the 

MUVR2 algorithm for EN core modeling.  

2. Installation 

First, please ensure that you have downloaded and installed R on your computer (https://www.r-

project.org/). Furthermore, for practical data analytical work we recommend to download, install 

and work in RStudio (https://www.rstudio.com/) or another IDE of your choice, which has several 

advantages over working in “simple” command line R. There are several online resources for 

learning to work efficiently with R and RStudio (e.g. https://www.rstudio.com/online-learning/) and 

you can use any search engine to find good, freely available material. In this tutorial, R code that you 

may directly run in your Rstudio console is shown in red monotype font. Functions, parameters 

and arguments are written in italics.   

1. Install the ‘remotes’ package from CRAN: 

install.packages("remotes") 

A

 

B

 

B

 

A

 

https://www.r-project.org/
https://www.r-project.org/
https://www.rstudio.com/
https://www.rstudio.com/online-learning/
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2. Install MUVR2 from Gitlab. 

library(remotes) 

install_github("MetaboComp/MUVR2") 

3. To reduce computation time, MUVR2 uses the ‘doParallel’ package for parallel processing: 

install.packages("doParallel") 

3. Preparing data 

The MUVR2 algorithm uses predictors (X) and a target (Y) data which are matched by observations, 

i.e. each position in the Y target variable must be matched to the corresponding row in the X matrix. 

The X matrix thus has observations in the rows and variables in the columns. The X columns need to 

have unique names (variable identifiers). This can be checked with colnames(X).  

Some data types are not readily modeled by PLS without some preprocessing. For efficient analysis 

by PLS or EN, microbiota data may for example be log-transformed following the addition of a 

“pseudo count” (i.e. an offset) to manage zero values. For convenience, MUVR2 provides the 

function preProcess() which performs 5 different preprocessing tasks: offset (of all data); zero 

offset (of zero values in the data), transformation (log, sqrt or none), centering (mean, none or 

customized – see help file using ?preProcess) and scaling (unit variance, pareto, none or 

customized – see help file using ?preProcess).  

The effect of predictor variables’ scaling in MUVR2 will depend on the choice of the core algorithm. 

For example, random forest is a scale-invariant technique and therefore insensitive to 

transformations such as log or sqrt, to centering and to scaling. PLS, on the other hand, is very 

sensitive to both transformations and scaling. The default in MUVR2-PLS is to internally center to the 

mean and scale data to unit variance in all underlying submodels (scale = TRUE). If other scaling 

options are desired, the user should disable automatic internal scaling (scale = FALSE) and pre-

perform a desired preprocessing technique, e.g. using the preProcess() function. 

The following tutorial sections give examples of how you can use different core modeling methods in 

different problems, i.e. MUVR2-PLS for regression analysis, MUVR2-EN for classification analysis and 

MUVR2-RF for multilevel analysis. Importantly, to avoid any confusion, we emphasize that you can 

use any of the 3 core modeling methods for any of the 3 problem types (regression, classification or 

multilevel), with or without repeated (dependent) samples.  

4. Analysis 

Please note that the MUVR2 algorithm performs resampling of the data in each repetition leading to 

slightly different results each time an analysis is run, wherefore results may differ slightly from those 

reported for the regression, classification and multilevel analysis reported here.  

4.1. Regression analysis 

In this example, we will walk through a MUVR2 regression analysis using PLS core modeling. In this 

regression example, we will use the “freelive2” dataset, which has data on dietary exposure to 

wholegrain rye and urine metabolomics data from 58 individuals to identify biomarkers of whole-

grain rye exposure (Hanhineva et al 2015).  

First, we set up libraries, data and parameters: Typing library(doParallel) and library(MUVR2) 

will call in relevant libraries and then typing data("freelive2") will load 3 objects: A continuous 
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‘YR2’ target variable with wholegrain rye consumption for 58 individuals; A numeric ‘XRVIP2’ matrix, 

consisting of 1147 metabolomics features from the samples of the 58 individuals; An ‘IDR2’ vector 

with unique identifiers of each individual (numerical IDR2). Note that we will discuss the scenario of 

repeated samples later in section 4.4, where each individual could have more than one observation, 

representing multiple samples from the same individual.  

# Call in relevant libraries 
library(doParallel)     # Parallel processing 
library(MUVR2)           # Machine Learning modeling 

# Call in the "freelive2" data from the MUVR2 package 
data("freelive2") 

It is often practical to separate between nCore (i.e. the number of computer cores to use for 

processing) and nRep (the number of repetitions in the MUVR2 algorithm). Performing nCore <- 

detectCores() - 1 uses all but one thread (kept for everyday computer usage), which makes for 

efficient processor use. Performing instead nCore <- detectCores() will result in slightly more 

efficient CPU usage for calculations, but leave you with practically no possibility to use your 

computer for other tasks during calculations. nRep is usually set to a multiple of nCore for efficient 

processor usage. For initial “quick’n’dirty” modeling (as in all the examples we show below), we 

normally set nRep = nCore. For final processing, we often set nRep between 20 and 50 and check 

modeling convergence using the plotStability() function (see below). Depending on your 

parameter settings and size of data, the modeling may take minutes or even hours. Initial modeling 

using “quick’n’dirty” settings is thus encouraged to get a feel for the modeling potential before final 

processing. 

We normally set the number of outer cross-validation segments between 6-8, with higher number of 

segments when there are fewer observations to increase the ratio of observations used for model 

training. A general recommendation is also to ensure that all classes are present in all segments (by 

ensuring that nOuter is not larger than the smallest class size within the target variable). The variable 

ratio (varRatio) parameter governs the proportion of variables kept for iteration of the recursive 

variable elimination in the inner loop. We normally start out low (varRatio = 0.6-0.75) and increase 

towards 0.8-0.9 for final processing. 

# Set method parameters 
nCore <- detectCores() - 1 # Number of processor threads to use 
nRep <- nCore              # Number of MUVR2 repetitions 
nOuter <- 8                # Number of outer cross-validation segments 
varRatio <- 0.75           # Proportion of variables kept per iteration  
method <- 'PLS'            # Selected core modeling algorithm 

After setting parameters, it is time to initialize parallel processing and perform the actual modeling.  

# Set up parallel processing 
cl <- makeCluster(nCore)    
registerDoParallel(cl) 

# Perform modeling 
regrModel <- MUVR2(X = XRVIP2,  
                   Y = YR2,  
                   nRep = nRep,  
                   nOuter = nOuter,  
                   varRatio = varRatio,  
                   method = method) 
 
# 1.49 mins using 7 threads on a laptop computer with 11th Gen Intel I Core I i7 -1185G7 processor 
with 8 cores and 31.7 Gb internal memory. 
# Stop parallel processing 
stopCluster(cl) 
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After the model finishes running, we can check the prediction performance, hyperparameter 

selection and number of variables selected by ‘min’, ‘mid’, ‘max’ consensus models (see below). 

regrModel$fitMetric              # Look at fitness metrics for min, mid and max models 
# $R2 
# [1] 0.9196686 0.9317392 0.9359603 
# $Q2 
# [1] 0.4311033 0.4140635 0.4633704 

regrModel$nComp                  # Number of components for min, mid and max models 
# min mid max  
#   3   3   3 

regrModel$nVar                   # Number of variables for min, mid and max models 
# min mid max  
#  47  85 152  
 
cbind(YR2, regrModel$yPred)       # Actual exposures side-by-side with min, mid and max predictions 
#                YR2        min        mid        max 
# 1_ID1     11.0666667  22.329490  21.730449  23.196849 
# 2_ID100   12.1000000   8.743642   7.655014   8.654301 
# 3_ID101   57.7333333  64.920179  78.548436  82.403806 
# …         …           …          …          … 

In the validation plot generated by plotVAL(regrModel)(Figure 3), light grey lines represent 

validation performance for the individual inner segments as a function of the number of variables in 

the recursive variable elimination procedure. The darker grey lines represent inner segment 

validation curves averaged over each repetition. Similarly, the black line represents validation curves 

averaged over all repetitions. The “quick’n’dirty” model with few repetitions (Figure 3A) and the final 

model (Figure 3B) show similar validation trends, although with improved resolution in the final 

model.  

Minimal-optimal (‘min’) and all-relevant (‘max’) models represent the outer borders of variable 

selections where the validation performance is optimal (in this case represented by root mean 

squared error of prediction (RMSEP)). This is in practice determined as having validation 

performance within a certain percentage of slack allowance from the actual minimum (default 5%), 

when rescaling the fitness range from the worst to the best fitness to {0, 1}.  The minimal-optimal 

model thus represents the minimal variable set required for optimal method performance, i.e. with 

the strongest predictors e.g. suitable for biomarker discovery. The all-relevant model instead 

represents the data set with all variables with relevant signal-to-noise in relation to the research 

question: i.e. the strongest predictors and, additionally, variables with redundant but not erroneous 

information. The ‘mid’ model represents a trade-off between the ‘min’ and ‘max’ model and is found 

at the geometric mean.  

plotVAL(regrModel) 
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Figure 3. Validation plots of MUVR2-PLS models in the regression analysis using different settings, plotted by plotVAL(). 

The left figure (A) uses nRep = 7, varRatio = 0.75, nOuter = 8 and the right figure (B) uses nRep = 35, varRatio = 0.85, 

nOuter = 8.         

For regression analysis, the plotMV() function plots the actual target variable on the x-axis and 

predictions on the y-axis (Figure 4). Predictions from individual repetitions are represented as 

smaller, grey dots, whereas overall predictions are represented by larger black dots. This provides an 

overview of prediction precision between repetitions. Inlaid is validation R2 obtained from overall 

consensus model (i.e. a model using all data for training and prediction, but with the number of 

components and variable selections obtained from MUVR2) and Q2 obtained from MUVR2 modeling. 

For convenience, the MUVR2 package also provides a PLS biplot function, biplotPLS() for visual 

interpretation of PLS models by giving an overview of observation scores and variable loadings 

(Figure 5). In the present case, the symbols are color coded (grey scale) according to their exposure 

(xCol = YR2). To avoid cluttering, score and loading labels were omitted. 

plotMV(regrModel, model = 'min')                  # Look at the model of choice: min, mid or max 
PLSfit = regrModel$Fit$plsFitMin                  # Extract consensus PLS model  
biplotPLS(PLSfit, comps = 1:2, xCol = YR2, labPlSc = FALSE, labPlLo = FALSE) 

Figure 4. Comparison between actual and predicted 

target variable of MUVR2-PLS in the regression 

analysis, plotted by plotMV() 

 

Figure 5. Scores and loadings of variables selected by the 

minimal-optimal consensus model of MUVR2-PLS in the 

regression analysis, plotted by biplotPLS() 

 

A

 

B
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The stability plot from plotStability() for regression analysis generates three subplots (Figure 6): (i) 

The number of selected variables in each repetition, as well as the cumulative average over the 

repetitions; (ii) The proportion of selected variables shows the ratio of the final variable selection 

found in each repetition and cumulatively, averaged over the number of repetitions; (iii) Q2 per 

repetition and cumulatively. For all subplots, there may be some variability between individual 

repetitions due to the random sampling of observations into the cross-validation segments. 

However, cumulative averages converge rapidly, and we normally observe convergence within 20-50 

observations or even faster, depending on the strength of the association between predictor and 

target variables. If the stability plot shows high variability, especially for the cumulative curves, a 

higher nRep argument setting may be warranted. 

plotStability(regrModel, model = 'min') 

 

Figure 6. Stability plots under the minimal-optimal consensus model of MUVR2-PLS in the regression analysis, plotted by 

plotStability(). 

The plotVIRank() function generates a boxplot of the ranks-per-repetition (lower is better) of a 

number of top-ranked variables (argument n specific the number of variables) (Figure 7) or the 

variables that are automatically selected (argument model = ‘min’, ‘mid’ or ‘max’).  This output 

generates an intuitive overview of which variables are reproducibly selected with low rank, which 

may thus be the strongest predictors of the target variable. For the sake of readability of variable 

names, the following VIRank plot was truncated to showing the top 20 predictors. However, the 

default is to show the number of variables corresponding to either the ‘min’, ‘mid’ or ‘max’ selection. 

plotVIRank(regrModel, n = 20) 
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Figure 7. Variable importance ranks under the minimal-optimal consensus model of MUVR2-PLS in the regression analysis, 

plotted by plotVIRank(). Truncated to top 20 variables for the sake of readability of variable names. 

The selected variables can also be obtained using getVIRank(): 

getVIRank(regrModel, model = 'min')   # Extract most informative variables: Lower rank is better 
#                          order            name             rank 
# HPX283.9974.1.2967925      1     HPX283.9974.1.2967925   3.903061 
# RNX262.0145.2.1115243      2     RNX262.0145.2.1115243  39.155612 
# RNX228.063.2.7376049       3     RNX228.063.2.7376049   76.359694 
# RPX492.2371.7.5598454      4     RPX492.2371.7.5598454  79.339286 
# ... 
 

Note that regression using Random forest can easily be achieved by changing the ‘method’ 

argument into method = ”RF”  and regression using elastic net will be achieved by the MUVR2_EN() 

function (see section 4.2). 

4.2. Classification analysis   

The general outline of a classification analysis follows the same approach as the regression analysis 

described above, including considerations for parameter settings, albeit with the difference that the 

Y target variable consists of factor levels rather than numeric values. We will walk through a MUVR2 

classification analysis using elastic net (EN) core modeling. We will use the “mosquito” dataset, 

which has data on microbiota composition data (OTU data from 16S rRNA analysis) from 29 

Anopheles gambiae mosquitoes sampled from 3 different villages in western Burkina Faso (Buck et al 

2016).  

First, we set up libraries, data and parameters as in section 4.1: We call in relevant libraries and 

typing data("mosquito") will load 2 objects: A categorical ‘Yotu’ target variable (three levels, i.e. 

villages) for 29 samples and; A numeric ‘Xotu’ matrix, consisting of 1678 16S rRNA operational 

taxonomic units (OTU) measured for the 29 samples.  

# Call in relevant libraries 
library(doParallel)     # Parallel processing 
library(MUVR2)           # Machine Learning modeling 

# Call in the "mosquito" data from the MUVR2 package 
data("mosquito")  

We then check for the number of observations per class to make sure nOuter is not bigger than the 
number of observations of the smallest class. 
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# Check the number of observations per class 
table(Yotu)             # As a general principle, nOuter should be ≤ n of the smallest class (i.e. 8) 

# Yotu 
# VK3 VK5 VK7  
# 10  11   8 
 

The elastic net in the MUVR2 algorithm is slightly different from PLS and RF. First, we use the 
MUVR2_EN() function instead of MUVR2() to perform the modeling and we do not need to specify a 
‘method’ since MUVR2_EN() only performs elastic net (EN) core modeling. Second, EN core modeling 
in MUVR2 does not perform the variable selection by recursive variable elimination similar to 
MUVR2-PLS and MUVR2-RF. Instead, it ranks variables by the proportion of times that variables had 
a non-zero beta coefficient across the calibration set consensus models (i.e. over a total of nOuter x 
nRep models). Variables that had non-zero beta coefficients more frequently are ranked as more 
important. Finally, MUVR2_EN() does not report the selected number of variables directly since the 
variable selection requires some manual assessment (see below). 

We can now set parameters, initialise parallel processing and perform the actual modeling. Note 
that to do a classification, you should specify the argument DA = TRUE, where DA stands for 
discriminant analysis. However, for convenience, the DA argument can be omitted and MUVR2() or 
MUVR2_EN() will automatically perform a classification analysis if the Y vector is either in factor or 
character format (or a regression analysis if the vector Y is in numeric format). 

# Set method parameters 
nRep <- 35                  # Number of MUVR2 repetitions 
nOuter <- 8                 # Number of outer cross-validation segments 
 
# Set up parallel processing using doParallel  
nCore <- detectCores() - 1 # Number of processor threads to use 
cl <- makeCluster(nCore)    
registerDoParallel(cl) 
 
# Perform modeling (It may take some time to run). 
classModel <- MUVR2_EN(X = Xotu,  
                       Y = Yotu,  
                       nRep = nRep,  
                       nOuter = nOuter,  
                       varRatio = varRatio,  
                       DA = TRUE) 
 
# Stop parallel processing 
stopCluster(cl) 
 

The reason nVar is not reported using MUVR2_EN() is that variables are not selected from recursive 
elimination as in MUVR2-PLS and MUVR2-RF. There are thus no continuous validation curves from 
which to estimate prediction performance. Instead, there are two options for variable selection in 
MUVR2-EN, using the getVar() function: In the first approach (option = ”fitness”), an analogous 
validation curve is generated from the smoothing of the nRep x nOuter prediction performances for 
each test set. Using this approach, the ‘min’, ‘mid’ and ‘max’ selections are decided similarly as for 
MUVR2-PLS and MUVR2-RF (i.e. validation performance within a certain percentage of slack 
allowance from the actual minimum (default robust = 5%). 

However, this dependence on individual data points rather than continuous curves may result in the 
smoothed validation curve having uneven coverage over the range of selected variables. Users 
should therefore first visualize the validation curve using plotVAL(). For example, in Figure 8A, the 
validation plot (nRep = 35, nOuter = 8) shows that the ‘min’, ‘mid’ and ‘max’ selections all reside in 
places where the density of data points is not the highest. However, although it is obvious that 
higher numbers of selected variables are under-represented, the validation curve from the model 
above with the 280 underlying fitness estimates looks as expected with a well-defined global 
minimum (U-shape). Additionally, in some scenarios, the smoothed curve may show strange 
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behavior, not conforming to the expected U-shape. For example, a corresponding “quick’n’dirty” 
model (nRep = 5, nOuter = 5) for the same data clearly does not produce a similar U shape and does 
not have a sufficient amount of fitness estimates to serve as grounds for producing a reliable 
validation curve (Figure 8B). This suggests that the number of repetitions (and possibly nOuter 
segments) should be increased.  

classModel <- getVar(classModel,  
                     option = "fitness",  
                     robust = 0.05, 
                     outlier = "none") 
 
plotVAL(classModel) 

 

Figure 8. Validation plots of MUVR2-EN models using the smooth curve method for variable selection. The left figure (A) 

uses nRep = 35, nOuter = 8 and the right figure (B) uses nRep = 5, nOuter = 5.         

To further explore the ‘min’, ‘mid’ and ‘max’ selections, users can rerun getVar() with different 
allowances for validation performance (changing the robust argument from its default 0.05). In 
addition, the curve smoothing is sensitive to outliers, which can result in “squiggly” curve shapes. In 
this case, users can both choose to automatically detect and remove outliers using either 
interquartile range or the residuals from generalized additive models (specifying the argument 
outlier = “IQR” or outlier = ”residual” rather than its default outlier =“none”) and also adjust the 
amount of smoothing (decreasing the span argument from its default 1) in getVar().  

If well-defined validation curves can still not be achieved by increasing the number of repetitions or 
nOuter, by removing outliers or modifying the degree of smoothing, this first approach is not viable 
and we instead suggest a second approach for selecting variables, using the argument option 
= ”quantile”. Contrary to the standard MUVR2 approach and the above described "smoothed" 
approach, this method disregards the modeling performance and instead selects ‘min’, ‘mid’ and 
‘max’ directly from the distribution of the number of selected variabels (i.e. non-zero beta 
coefficients) across the nRep x nOuter calibration set models. The ‘mid’ option always corresponds 
to the median, whereas the argument quantile allows the user to choose the number of selected 
variables for ‘min’ and ‘max’ based on quantiles. For example, based on the same modeling result as 
Figure 8A, Figure 9 used option = ”quantile”, quantile = 0.25 in getVar(), which gives the first quartile 
as the ‘min’, median as the ‘mid’ and the third quartile as the ‘max’ number of selected variables. 
This concentrates the variable selections to the positions where the density of the number of 
variables selected by nRep x nOuter calibration set models is the highest although at the cost of not 
simultaneously incorporating overall prediction performance in the assessment. 

classModel <- getVar(classModel,  
                     option = "quantile", 
                     quantile = 0.25, 

A

 

B
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                     outlier = "none") 
plotVAL(classModel) 
 

 

Figure 9. Validation plots of MUVR2-EN models using the quantile method for variable selection (based on the same 

modeling result as Figure 8A).  

We can then look at the final model outputs, similar to the previous regression example. However, 
note that classification analysis uses different fitness metrics than regression (with balanced error 
rate (BER) as default). An important difference in MUVR2-EN compared to MUVR2-PLS and MUVR2-
RF is that we only have one BER and one predicted target variable for the model instead of one each 
for ‘min’ ‘mid’ and ‘max’. This is because there is no recursive variable elimination for MUVR2-EN 
and nVar is selected after model building.  

classModel$ber                              # Balanced error rate for min, mid and max models 
# 0.1356061 
 
classModel$nVar                             # Number of variables for min, mid and max models 
# min   mid   max  
#  10    39    79 
 
cbind.data.frame(Yotu, classModel$yClass)    # Actual class side-by-side with min, mid and max 
predictions 
#     Yotu         classModel2$yClass 
# 1   VK3                VK3 
# 2   VK3                VK3 
# 3   VK3                VK3 
# 4   VK3                VK3 
# …   …                  …       
 
classModel$varTable                       
# Number of times a variable is being selected across nRep*nOuter calibration set models    
#  OTU_28 OTU_4133  OTU_400 OTU_1620 OTU_1013  OTU_243  OTU_134  OTU_337   OTU_26 OTU_1624 OTU_1679  … 
#     280      263      225      224      223      210      191      189      184      179      178  … 

The prediction plot for classification analysis is different from its regression counterpart. The 

plotMV() function generates what we call a “swim lane” plot, where each lane represents 

predictions for an observation (Figure 10). Predictions are color-coded and jittered by class. The 

smaller dots represent predictions from individual repetitions and the larger dots represent class 

prediction averaged over all repetitions. Misclassified predictions are circled. The spread in the 

individual predictions gives an intuitive graphical overview of prediction precision. In MUVR2-PLS 
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and MUVR2-RF, using the model argument, the users can easily switch between ‘min’, ‘mid’ and 

‘max’ models. 

plotMV(classModel)  
# In MUVR2-PLS and MUVR2-RF, you can specify min, mid or max using the ‘model’ argument. 

 

 

Figure 10. Class prediction probability for observations of MUVR2-EN in the classification analysis, plotted by plotMV() 

The stability plot now gives misclassifications and BER instead of Q2 in the bottom part of the plot 

(Figure 11), but is otherwise similar to the regression stability plot.  

plotStability(classModel, model = 'mid')  
 
 

 

 

Figure 11. Stability plots under the 'mid' variable selection of MUVR2-EN in the classification analysis, plotted by 

plotStability(). 
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Selected variables can be obtained similar to the regression analysis using plotVIRank() and 

getVIRank(). Note that plotVIRank() in MUVR2-EN gives a different plot than MUVR2-PLS and 

MUVR2-RF, since variable selection in MUVR2-EN is based on the variables that have non-zero beta-

coefficient over nOuter segments and nRep repetitions rather than recursive variable elimination. In 

Figure 12, each row represents one calibration set model (nRep x nOuter models) and each column 

represents a variable. Red denotes that the variable was selected (i.e. had a non-zero beta 

coefficient) in the corresponding calibration set model. Calibration set models are ordered from 

selecting the most to the fewest variables and variables are sorted based on selection rates. Despite 

a wide variability in the number of selected variables, a core set of variables was systematically 

selected.  

plotVIRank(classModel, model = 'mid', maptype = "heatmap")    

 
Figure 12. Variable importance ranks under the 'mid' variable selection of MUVR2-EN in the classification analysis, plotted 

by plotVIRank() 

getVIRank(classModel, model = 'mid')   # Extract most informative variables: Lower rank is better 
#            order    name       rank 
# OTU_28       1     OTU_28       1.0 
# OTU_4133     2     OTU_4133     2.0 
# OTU_1620     3     OTU_1620     3.0 
# OTU_400      4     OTU_400      4.0 
# …            …     …            …     

4.3. Dealing with repeated samples 

In the regression example in section 4.1, we have used the ”freelive2” data, where the observations 

are from 58 different individuals, i.e. with one sample per individual. What if there are more than 

one sample for some individuals in the data? Standard procedures for cross-validation will not take 

the this into account during the division of data into cross-validation segments (folds). Consequently, 

there is a high likelihood of overfitting to the data by having observations from the same individual 

present in both model training, validation and/or testing segments. To reduce such overfitting, 

MUVR2() and MUVR2_EN() can use the ID argument to ensure that samples from the same 

individual are always kept together in the cross-validation segments. 

An example is given here to add complexity of repeated samples using the “freelive” data, which is 

similar to “freelive2” data but including more than one sample per individual. First, we set up 

libraries, data and parameters as in section 4.1: We call in relevant libraries and typing 
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data("freelive") will load 3 objects: A continuous ‘YR’ target variable with wholegrain rye 

consumption for 112 samples from 58 individuals (some individuals did not provide repeated 

samples); A numeric ‘XRVIP’ matrix, consisting of 1147 metabolic features for the 112 samples; An 

‘IDR’ vector with identifiers of the individuals that informs which samples are from which individual. 

To ensure that all observations per individual are co-sampled into the same cross-validations 

segment, we can simply add the ID argument to the MUVR2() function call from section 4.1. 

# Set method parameters 
nCore <- detectCores() - 1 # Number of processor threads to use 
nRep <- nCore              # Number of MUVR2 repetitions 
nOuter <- 8                # Number of outer cross-validation segments 
varRatio <- 0.75           # Proportion of variables kept per iteration  
method <- 'PLS'            # Selected core modeling algorithm 

cl <- makeCluster(nCore)    
registerDoParallel(cl) 
regrModel <- MUVR2(X = XRVIP,  
                   Y = YR,  
                   ID = IDR,  
                   nRep = nRep,  
                   nOuter = nOuter,  
                   varRatio = varRatio,  
                   method = method) 
stopCluster(cl) 

4.4. Multilevel analysis 

In the example in section 4.3, there was a dependency between observations due to repeated 

sampling. However, this represented to measurement occasions, both under free-living conditions. 

Since it was not related to a systematic effect (such as before-vs-after intervention or treatment A-

vs-B in a crossover design), the dependency was managed by co-sampling dependent observations 

into the same cross-validation segments using the ID argument. However, sample dependency may 

also be related to such a systematic effect. Analysing such data using standard classification 

modeling will result in both (i) having observations from the same individual both in model training 

and testing if not ensuring co-sampling (as in the previous example using the ID argument) and, in 

addition, (ii) conflation of between-individual effect and treatment-related systematic within-

individual effects. This sample dependency by experimental unit needs to be addressed in a different 

manner, e.g. by so-called multilevel ML analysis (Westerhuis et al, 2010). This should, however, not 

be confused with the multilevel model concept in classical statistics 

(https://en.wikipedia.org/wiki/Multilevel_model).  

In the rationale building up to this approach, a standard machine learning-based classification 

analysis can be viewed as a multivariate extension of an unpaired t-test, i.e., comparing systematic 

differences between two groups although analysing multiple predictor variables simultaneously. 

Using the same analogy, a multilevel model would correspond to a paired multivariate t-test, i.e. 

with pairwise linked samples (Westerhuis et al, 2010).  

In practice, multilevel modeling is not a separate modeling technique, but rather a clever data pre-

processing trick to manage sample dependency: Instead of modeling the original data from two 

discrete time points (or two treatments) as separate observations, an effect matrix is instead 

calculated as: EM = XB – XA (or EM = log(XB / XA)) which in turn is modeled by regression using a 

dummy variable for the Y target variable. In the MUVR2 package, multilevel analysis is invoked by 

setting the ML argument to TRUE. The user must manually perform pre-processing to generate and 

supply the effect matrix as predictors (Figure 13). The Y target variable is deliberately left out and 

https://en.wikipedia.org/wiki/Multilevel_model
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calculated internally. Within the MUVR2 algorithm, further data pre-processing will be done to set 

up the multilevel analysis: 

 

Figure 13. Illustration of the multilevel analysis n MUVR2. To make a multilevel analysis using MUVR2, the user must 

pre-process the original data into an effect matrix (EM). MUVR2 is then called using the parameters X=EM and ML=TRUE. 

A new predictor matrix and a dummy Y target variable will then be calculated internally within MUVR2. 

 

In this multilevel example using MUVR2-RF, the “crisp” dataset is used, which has untargeted plasma 

metabolomics data from two different dietary interventions delivered to 21 subjects in a cross-over 

design, i.e., where each participant received both diets. There is thus a clear systematic sample 

dependency (by individual) advocating multilevel analysis. Typing data("crisp") will load an effect 

matrix (‘crispEM’) with 21 rows (one row per individual) and 1508 columns, consisting of differences 

in area-under-the-curve values (AUC) of metabolic features measured after two different breakfast 

meal interventions. 

Comments and clarification of code and results have been elaborated in the regression and 

classification analysis, and here we will only add explanations for the parts that are different in 

multilevel analysis.  

# Call in relevant libraries 
library(doParallel)     # Parallel processing 
library(MUVR2)           # Machine Learning modeling 

# Call in the "crisp" data from the MUVR2 package 
data("crisp") 

# Set method parameters 
nCore <- detectCores() - 1       # Number of processor threads to use 
nRep <- nCore                    # Number of MUVR2 repetitions 
nOuter <- 8                      # Number of outer cross-validation segments 
varRatio <- 0.75                 # Proportion of variables kept per iteration  
method <- 'RF'                   # Selected core modeling algorithm 

# Set up parallel processing 
cl <- makeCluster(nCore)    
registerDoParallel(cl) 
# Perform modeling 
MLModel <- MUVR2(X = crispEM,  
                 ML = TRUE,  
                 nRep = nRep,  
                 nOuter = nOuter,  
                 varRatio = varRatio,  
                 method = method) 
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# Stop parallel processing 
stopCluster(cl) 

# Examine model performance and output 
MLModel$nVar                   # Number of variables for min, mid and max models 
# min mid max  
#  5   6  7 

MLModel$miss                   # Misclassified observations 
# min mid max  
#  8   8   8 
 
MLModel$ber    
# min       mid       max  
# 0.1904762 0.1904762 0.1904762 
 
MLModel$fitMetric              # Fitness metrics for min, mid and max models dummy regressions 
# $R2 
#       min       mid       max  
# 0.7382263 0.7560964 0.7495876  
 
# $Q2 
#       min       mid       max  
# 0.4265355 0.3909502 0.3860555 
 
MLModel$yPred                  # Multilevel predictions from min, mid and max models 
#                min        mid         max 
# 1_ID1   -0.5804444 -0.5025397 -0.55692063 
# 2_ID2   -0.7255238 -0.6231111 -0.63400000 
# 3_ID3   -0.1409365 -0.1821270 -0.22317460 
# 4_ID4   -0.5986032 -0.7677460 -0.72241270 
# …        …          …          … 
 
MLModel$yClass                 # Predicted class from min, mid and max models 
#         min mid max 
# 1_ID1    -1  -1  -1 
# 2_ID2    -1  -1  -1 
# 3_ID3    -1  -1  -1 
# 4_ID4    -1  -1  -1 
# …         …   …   … 

plotVAL(MLModel) 

 

Figure 14. Validation plots of MUVR2-RF models in the multilevel analysis, plotted by plotVAL().  



18 
 

The validation plot from plotVAL() (Figure 14) shows a similar behaviour as for regression. The 

multilevel prediction plot from plotMV() (Figure 15) is different from both the regression line plot 

and the classification swim lane plot. The upper and lower half of the prediction plot represent the 

predicted Y target variable for the positive and negative half of the effect matrix, respectively. The 

expected Y values are the dummy values -1 for the upper half and +1 for the lower half and 

predictions have a decision boundary at Y = 0. Consequently, 4 out of 21 individuals are misclassified. 

The MLModel$miss (number of miss classifications) will however report 8 misses since the value is 

based on two instances per individual (i.e. upper and lower half).  

 
plotMV(MLModel, model = 'min')      # Look at the model of choice: min, mid or max  

 

Figure 15. Comparison between the expected and predicted target variable of MUVR2-RF in the multilevel analysis, plotted 

by plotMV() 

The stability plot from plotStability() (Figure 16) is similar to both regression and classification and 

will provide Q2 (for the dummy regression), number of misclassification and BER both per repetition 

and cumulative. 

plotStability(MLModel, model = 'min') 
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Figure 16. Stability plots for the minimal-optimal (‘min’) MUVR2-RF model in the multilevel analysis, plotted by 

plotStability(). 

The plotVIRank() function generates a similar boxplot (Figure 17) as MUVR2-PLS in section 4.1 and 

the getVIRank() function generates similar output as MUVR2-PLS in section 4.1 and MUVR2-EN in 

section 4.2 

plotVIRank(MLModel, model = 'min')  

 

Figure 17. Variable importance ranks under the minimal-optimal (‘min’) MUVR2-RF model in the multilevel analysis, 

plotted by plotVIRank() 
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getVIRank(MLModel, model = 'min')   # Extract most informative variables: Lower rank is better 
#                  order                          name                     rank 
# RP299.294404650545@676.121968     1    RP299.294404650545@676.121968   28.24362 
# RP227.587118694585@308.198        2    RP227.587118694585@308.198      863.95408 
# RP176.070629478804@298.882        3    RP176.070629478804@298.882      944.25000 
# RP286.282164509847@675.669952     4    RP286.282164509847@675.669952   971.42092 
# RP335.291268856479@702.010968     5    RP335.291268856479@702.010968   1024.52551 

4.5. Recap 

The MUVR2 algorithm provides PLS, RF and EN core machine learning methods. To avoid any 

confusion, any of the three methods can be used for regression, classification or multilevel analysis. 

Moreover, all models are equally capable of addressing repeated measures (i.e. segment sampling 

by ID rather than observations) using the ID argument. Importantly, MUVR2-PLS and MUVR2-RF 

(using the MUVR2() function) perform variable selection by recursive variable elimination while 

building the models, whereas MUVR2-EN selects variables based on how often they were selected 

(i.e., had non-zero beta coefficients) across the nRep x nOuter calibrations set models. Consequently, 

MUVR2-PLS and MUVR2-RF gives predictions and fitness for ‘min’, ‘mid’ and ‘max’ respectively and 

MUVR2-EN gives only one prediction and fitness (although it still gives ‘min’, ‘mid‘ and ‘max’ variable 

selections). Moreover, the validation plots generated by plotVAL() and the plot for variable ranks by 

plotVIRank() will be similar for MUVR2-PLS and MUVR2-RF regardless of problem type, whereas 

plotVAL() on MUVR2-EN will give validation plots based on either smoothed  validation fitness curves 

or quantiles. Additionally, the final variable selection in MUVR2-EN will use the getVar() function. 

plotVIRank() on MUVR2-EN will give a simple heat map that shows which variables are selected in 

which calibration set models. 

5. Covariate adjustment 

In the upgraded MUVR2 package, MUVR2-EN provides covariate adjustment by suppressing 

regularization. Importantly, similar covariate adjustment is not available in MUVR2-PLS or MUVR2-RF. 

In practice, to achieve such adjustment, users can quite simply provide the argument keep = 

c(“names of the variables”). Note that the variable names need to correspond exactly to column 

names in the predictor (X) matrix. After covariate adjustment, the ranks of the variables that are 

associated with both the target variable and the covariate will decrease. An example based on 

section 4.2 in this tutorial is given below. 

In that example, using MUVR2-EN to associate mosquitoes’ microbiota profiles to village of capture  

(nRep = 35, nOuter = 8), we can see how many times a variable had non-zero beta coefficient across 

nRep x nOuter calibration set models using classModel$varTable. Using getVIRank(classModel), 

we can also examine the ranks.  

getVIRank(classModel, model = 'max') 

#            order     name      rank       

# OUT_28       1      OUT_28     1.0 

# OTU_4133     2      OTU_4133   2.0 

# OUT_400      3      OUT_400    3.0 

# OTU_1620     4      OTU_1620   4.0 

#    …         …         …        … 

# OTU_1175    76      OTU_1175   76.5 

# OTU_1970    77      OTU_1970   76.5 

# OUT_100     78      OUT_100    78.0 

# OTU_5643    79      OTU_5643   79.0 
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To exemplify the use of the keep argument (albeit not grounded in an actual biological research 

question), we will artificially select one of the predictor variables as a covariate and then observe 

how the rank of other predictor variables that correlate with the chosen covariate change. Let’s first 

select a covariate to adjust for. We emphasize that this would normally be selected based on a 

hypothesis of the underlying causal structure. However, in this case we don’t have such covariates at 

hand and we instead choose one among the predictors to represent a potential covariate.  

In this example, we have selected the predictor variable, “OUT_100”, that is within the ‘max’ 

variable selection (by quantile) in MUVR2-EN, but not within the top-ranked predictors (see rank list 

above). In fact, covariates should not be too strong predictors of the target variable, which would 

lead to a Hauck-Donner effect (Yee, 2022) and in practice throw an error from the algorithm.  

We can then use the cor() function to identify which predictors among the ‘max’ predictors are 

strongly correlated with “OUT_100”. Using cor.test(), we can also get a p-value for the correlation. 

Through this procedure, we learn that the predictor “OUT_1962” correlates strongly (r = 0.83, p < 

0.001) with the covariate.   

# Extract the ‘max’ predictors  
max_predictors <- Xotu[ , classModel$Var$max] 
 
# Calculate the correlations between the ‘max’ predictors and "OUT_100" 
max_predictor_cor <- cor(max_predictors)[ , "OTU_100"] 
 
# Extract the name of the predictors that are strongly correlated (|r| > 0.75) with "OUT_100". 
max_predictor_cor[abs(max_predictor_cor) > 0.75] 
# "OTU_1962"    "OTU_100" 
#  0.8282541    1.0000000  
  
# Extract the p value for the correlation 
cor.test(Xotu[ , "OTU_100"], Xotu[ , "OTU_1962"])$p.value 
# 2.923568e-08 

 

We can now make a new model using "OTU_100" as a covariate (It may take some time to run): 

nCore <- detectCores() - 1   # Number of processor threads to use 

cl <- makeCluster(nCore)    
registerDoParallel(cl) 

classModel2 <- MUVR2_EN(X = Xotu,  
                        Y = Yotu,  
                        keep = c("OTU_100"),  
                        nRep = 35,  
                        nOuter = 8,  
                        DA = TRUE) 
stopCluster(cl) 
 

Now we can observe that the variable importance rank of “OTU_1962” drops from number 20 

without covariate adjustment to 703 with covariate adjustment. Across the 280 (nRep x nOuter) 

calibration set models it was selected 0 times with adjustment, comparing to 150 times without 

adjustment. However, please note that actual numbers of ranks and selections may fluctuate 

between repetitions due to stochastic effects. 

 

6. Resampling tests 

Permutation tests can be used to construct formal hypothesis tests and get a p-value of the actual 

analysis (Lindgren, et al, 1996). In brief, permutation tests are conducted by randomly sampling the 

target variable without replacement (permutation) and then modeling the permuted target variable 
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using the original predictors. This modeling of random responses is repeated a number of times and 

statistical significance is obtained by comparing the actual modeling result to the permutation 

distribution, representing the null-hypothesis distribution.  

In our example here, we have upgraded the permutation tests to resampling tests. In the simulation 
of a null-hypothesis target variable, effectively representing (pseudo-)random conditions, we have 
added additional variability compared to standard permutations. The rationale comes from the 
observation that model predictions are not bounded by the exact values or proportions of the actual 
target variable. We argue that the null-hypothesis target variable should similarly not have to be an 
exact reproduction of the actual target variable in random order. Thus, instead of obtaining the 
permuted target variable from sampling without replacement, we obtain the resampled target 
variable using random draws from its empirical distribution. In regression, sampling from the 
empirical distribution will thus result in numeric values not necessarily observed in the actual target 
variable but representing the same underlying distribution. In classification, this represents sampling 
the target variable based on class probabilities (i.e. sampling the actual target variable with 
replacement). Consequently, the null-hypothesis fitness distribution no longer exactly represents 
permutations of the actual target variable and, due to the sampling from empirical distributions, we 
refer to this new type of test as resampling tests instead of permutation tests. Resampled target 
variables can be generated using the H0_test() function and specifying the argument type = 
”resampling”. 

Here, we will show a resampling test of a random forest classification analysis of the “mosquito” 

data.  

We first generate the actual modeling fitness using the actual target variable. 

# Call in relevant libraries 
data("mosquito") 
 
# Declare modeling parameters 
nCore <- detectCores() - 1 
nRep <- 2 * nCore    # Number of repetitions per actual model and resamplings 
nOuter <- 5          # Number of validation segments 
varRatio <- 0.75     # Proportion of variables to keep per iteration during variable selection 
method <- 'RF'       # Core modeling technique 
model <- 1           # 1 for min, 2 for mid and 3 for max 
 
# Compute actual model and extract fitness metric; Approx 0.5 min 
cl <- makeCluster(nCore) 
registerDoParallel(cl) 
MUVR2_actual <- MUVR2(X = Xotu, 
                      Y = Yotu, 
                      nRep = nRep, 
                      nOuter = nOuter, 
                      varRatio = varRatio, 
                      method = method)  
 
actualFit <- MUVR2_actual$ber[model]  
stopCluster(cl) 
 
actualFit 
#   min 
# 0.305303 
 

Then we obtain the resampled modeling fitness distribution using the resampled target variable. To 

reduce computation time in this example, we set the number of resamplings to 25. The other model 

parameter settings should ideally be identical between the actual model and the resampled models. 

which is the default when performing resampling tests by the H0_test() function. However, to 

decrease the computational cost, compromises sometimes need to be made and we frequently 

reduce the nRep, nOuter and varRatio parameter settings (effectively resulting in a broader null-
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hypothesis distribution and larger p-values, thus “erring on the side of caution”). This can easily be 

achieved by changing those arguments in the call to the H0_test()  function.  

nResample <- 25   # Number of resamplings (here set to 25 for illustration; normally set to ≥100)  
 
cl <- makeCluster(nCore) 
registerDoParallel(cl) 
 
resamplings <- H0_test(MUVR2_actual, n = nResample, type = 'resampling') 
stopCluster(cl) 
 
resampleFit <- resamplings[ , model]   
              
resampleFit                       # the resampled fitness 
# permutation 1 permutation 2 permutation 3 permutation 4 permutation 5 permutation 6 permutation 7  
#     0.8128205     0.7285714     0.7016687     0.6840909     0.5833333     0.6111111     0.7017544  
# permutation 8 permutation 9 permutation 10 permutation 11 permutation 12 permutation 13  
#     0.7746032     0.7350427      0.5648148      0.7070707      0.5692308      0.5288462       
# permutation 14 permutation 15 permutation 16 permutation 17 permutation 18 permutation 19 
#      0.6102564      0.7449495      0.6462121      0.6433566      0.6787879      0.6259259       
# permutation 20 permutation 21 permutation 22 permutation 23 permutation 24 permutation 25 
#      0.6222222      0.8141026      0.8641026      0.6666667      0.4962121      0.5833333 
 
 

We offer 3 different types of statistical tests to compare the actual modeling fitness to the 

resampled fitness distribution and to calculate a p-value: i) An empirical test, where p-values are 

calculated from the smoothed resampled fitness distribution as the cumulative probability. ii) A t-

test, which assumes that the resampled fitness distribution follows a t-distribution and calculates 

the cumulative probability. iii) A non-parametric test, which uses the rank order of the actual fitness 

and the resampled fitness distribution, as performed by Szymańska et al (Szymańska et al., 2012). In 

general, we recommend the empirical test since the resampled fitness distribution frequently does 

not have a Gaussian distribution and the rank-order-based non-parametric test is limited in 

resolution and therefore unable to assess p < (1 / nResample). Simulations showed that the 

empirical distribution-based approach generated p-values similar to those obtained from a t-

distribution when the distribution was Gaussian (data not shown) and was also able to generate p-

value estimates from non-Gaussian distributions that better correspond to intuitive assessment 

compared both to the rank order-based and t-distribution-based approaches. 

The option of statistical tests can be specified by the type argument (type=’smooth’ for empirical test; 

type=’t’ for t-test; type=’rank’ for rank-order based non-parametric test) in the plotPerm() function, 

which gives a visual illustration of the actual fitness, the resampled fitness distribution and the p-

value. We can generate plots using the different statistical tests by the code below (Figure 18A-C). 

# Empirical test based on smoothed curve from resampled fitness distribution (Figure 18A): 
plotPerm(actual = actualFit, distribution = resampleFit, type = 'smooth', curve = TRUE, xlim = c(0, 1))  

# Parametric resampling test significance based on student’s t test (Figure 18B) 
plotPerm(actual = actualFit, distribution = resampleFit, type = 't', curve = TRUE, xlim = c(0, 1))  
 
# Non-parametric resampling test significance based on the rank order of fitness values (Figure 18C): 
plotPerm(actual = actualFit, distribution = resampleFit, type = 'rank', xlim = c(0, 1))  

However, one needs to be cautious that sometimes not only the modeling using the actual target 
variable can be driven by overfitting: the modeling itself may be effectively hindered depending on 
the suitability between the machine learning method and the resampled (or permuted) data, 
systematically affecting the null-hypothesis distribution. We can therefore visualize the expected 
modeling fitness under null-hypothesis conditions using a reference distribution (Figure 18D), along 
with the actual fitness and the resampled fitness distribution (Figure 18A-C). This reference 
distribution is obtained by calculating the fitness directly from the resampled target variables, i.e., 
without any modeling or predictions, thereby effectively excluding any overfitting from this scenario. 
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This can be achieved by using the H0_reference() function, using the target variable (Y), the number 
of resamplings (n) and desired performance metric (fitness) as arguments.  

H0_reference(Y = Yotu, n = 1000, fitness = "BER") 

If the resampled fitness distribution (‘resampleFit’ in the example above) resembles the reference 

distribution (i.e. the expected null-hypothesis distribution; ‘H0_reference’ in the example) as in 

Figure 18, it suggests that the modeling strategy does not contribute to overfitting. In this case, the 

estimated p-value should convincingly reflect a model’s prediction performance. On the contrary, if 

there is a systematic shift between the reference and the resampled fitness distributions, it suggests 

that the modeling strategy does not fit the data, likely driven by overfitting. 

 

 

Figure 18. Actual finesses, resampled fitness distributions and the reference distribution A. The p-value is calculated as the 

cumulative probability based on a smoothed curve generated directly from the resampled fitness distribution. B. The p-value 

is calculated as the cumulative probability from a t-distribution approximated from the resampled fitness distribution. C. The 

p-value is calculated from the rank-order within the resampled fitness distribution (consequently with no need to calculate or 

visualize curves). D. The reference distribution is obtained by calculating the fitness directly from the resampled target 

variables without any modeling or predictions. BER, balanced error rate. 

The above examples used BER as the fitness metric in classification analysis, but we could otherwise 

have used the number of misclassifications, although it is less suitable for imbalanced classes. In 
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regression, we use Q2 as fitness metric. For multilevel analysis, we can use either BER, number of 

misclassifications or Q2 as fitness metrics. 

Note that it is normally useful to perform initial resampling tests with few repetitions to get an 

indication of actual model fitness in relation to the resampled fitness distribution. Additional 

repetitions can then easily be added to the permutation distribution at will to obtain better p-value 

estimates.  
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