dummies |
Convert a N-category vector to a N-dimension matrix |
folds |
Generate a list of index for the n-fold cross-validation |
gen_latin |
Generate random numbers of latin hypercube sampling |
gen_sobol |
Generate sobol sequence |
gen_unifm |
Generate Uniform random numbers |
logl |
Calculate the multiclass cross-entropy |
pnn.fit |
Create a probabilistic neural network |
pnn.imp |
Derive the importance rank of all predictors used in the PNN |
pnn.optmiz_logl |
Optimize the optimal value of PNN smoothing parameter based on the cross entropy |
pnn.parpred |
Calculate predicted probabilities of PNN by using parallelism |
pnn.pfi |
Derive the PFI rank of all predictors used in the PNN |
pnn.predict |
Calculate a matrix of predicted probabilities |
pnn.predone |
Calculate the predicted probability for each category of PNN |
pnn.search_logl |
Search for the optimal value of PNN smoothing parameter based on the cross entropy |
pnn.x_imp |
Derive the importance of a predictor used in the PNN |
pnn.x_pfi |
Derive the permutation feature importance of a predictor used in the PNN |