Predicting Differential Drug Response using Multi-Omics Networks


[Up] [Top]

Documentation for package ‘molnet’ version 0.1.0

Help Pages

calculate_interaction_score Calls a python script to calculate interaction score for combined graphs
check_connection Checks connection
check_drug_target Check drug target interaction data
check_drug_targets_in_layers Check drug target and layer data
check_input Check pipeline input data for required format
check_layer Check layer input
check_sensible_connections Check connection and layer data
chunk Create chunks from a vector for parallel computing
chunk_2gether Create chunks from two vectors for parallel computing
combined_graphs_example Combined graphs
combine_graphs Combining graphs by adding inter-layer edges
corPvalueStudentParallel Compute p-values for upper triangle of correlation matrix in parallel
create_unique_layer_node_ids Assigns node IDs to the biological identifiers across a graph layer
determine_drug_targets Determine drug target nodes in network
differential_score The absolute difference of interaction score of two groups
differential_score_graph_example Differential graph
drug_gene_interactions Drug-gene interactions
drug_response_score_example Drug response score
drug_targets_example Drug target nodes in combined network
drug_target_interaction_example Drug target interaction example data
find_targets Filter drug target nodes
generate_combined_graphs Combines individual layers to a single graph
generate_individual_graphs Builds graphs from specified network layers
generate_reduced_graph Generate a reduced iGraph
get_drug_response_score Calculate drug response score
get_layer [INTERNAL] Fetch layer by name from layer object
get_layer_setting Get layer settings
graph_metrics Analyses metrics of an iGraph object
individual_graphs_example Individual graphs
install_python_dependencies Installs python dependencies needed for interaction score computation
interaction_score Computes interaction score for combined graphs
interaction_score_graphs_example Interaction score graphs
interaction_score_graphs_vignette Interaction score graphs for vignette
inter_layer_edgelist_by_id Interlayer conntections by identifiers
inter_layer_edgelist_by_table Interaction table to iGraph graph object
layers_example Formatted layers object
load_interaction_score_output Loads output of python script for interaction score calculation
make_connection Specify connection between two individual layers
make_drug_target Reformat drug-target-interaction data
make_layer Creates individual molecular layers from raw data and unique identifiers
metabolite_data Metabolomics data
metabolite_protein_interaction Metabolite protein interaction data
molnet_settings Create global settings variable for molnet pipeline
mrna_data mRNA expression data
network_reduction_by_pickHardThreshold Reduces network based on WGCNA::pickHardThreshold function
network_reduction_by_p_value Reduce the the entries in an adjacency matrix by thresholding on p-values
phosphoprotein_data Phosphosite data
pickHardThreshold_alternative Alternative implementation of WGCNA::pickHardThreshold
protein_data Protein data
return_errors Return detected errors
sample_size Sample size for correlation computation
scaleFreeFitIndex_alternative Alternative implementation of WGCNA::scaleFreeFitIndex
set_cluster Create and register cluster
shutdown_cluster Shutdown cluster and remove corresponding connections
start_pipeline Execute all molnet-pipeline steps sequentially
target_edge_list Edges adjacent to target nodes
write_interaction_score_input Write edge lists and combined graphs to files