Please post all the questions or queries related to MAFDash package on Github Issues. This will help us to build an information repository which can be used by other users.
install.packages("MAFDash")
install.packages(c("dplyr","ensurer","ggplot2","tidyr","DT","rmarkdown","knitr","flexdashboard","htmltools","data.table","ggbeeswarm","plotly","circlize","canvasXpress","crosstalk","bsplus","BiocManager","maftools","ComplexHeatmap"))
::install(c("TCGAbiolinks"))
BiocManagerinstall.packages(devtools)
library(devtools)
::install_github("ashishjain1988/MAFDash") devtools
Mutation Annotation Format (MAF) is a tabular data format used for storing genetic mutation data. For example, The Cancer Genome Atlas (TCGA) project has made MAF files from each project publicly available.
The package – MAFDash – contains a set of R tools to easily create an HTML dashboard to summarize and visualize data from MAF file.
The resulting HTML file serves as a self-contained report that can be used to explore the result. Currently, MAFDash produces mostly static plots powered by maftools, ComplexHeatmap and circlize, as well as interactive visualizations using canvasXpress and plotly. The report is generated with a parameterized R Markdown script that uses flexdashboard to arrange all the information.
This package is a companion to the Shiny app, MAFWiz. Instead of relying on a Shiny server, this dashboard is an attempt to try some of those things using client-side javascript functionality.
Mutation Annotation Format (MAF) is a tabular data format used for storing genetic mutation data. For example, The Cancer Genome Atlas (TCGA) project has made MAF files from each project publicly available. The main function of MAFDash (getMAFDashboard
) creates an HTML dashboard to summarize and visualize data from MAF files. The resulting HTML file serves as a self-contained report that can be used to explore and share the results. The example below shows how we can create an HTML MAF dashboard file. The first argument of getMAFDashboard
can be anything that’s accepted by maftools’s read.maf
function (path to a file, or a MAF
, data.frame
, or data.table
object)
library(MAFDash)
<- system.file("extdata", "test.mutect2.maf.gz", package = "MAFDash")
maf getMAFDashboard(maf, outputFileName="output", outputFileTitle=paste0("MAF Dashboard - Test"),outputFilePath = tempdir())
MAFDash also provides a wrapper function getMAFdataTCGA
around the TCGABiolinks
, which returns the mutation data of different cancers in MAF format from TCGA website. See this page for a list of TCGA codes.
library("MAFDash")
# Download MAF data from TCGA
<- c("ACC","UVM")
CancerCode <- tempdir() ## This folder will be created if it doesn't exist
inputFolderPath #maf <- getMAFdataTCGA(cancerCode = CancerCode, outputFolder = inputFolderPath)
#Creating individual plots using the MAF dataset
##Oncoplot The oncoplot shows the number and types of mutations in a set of genes across the samples. The function generateOncoPlot
can be used to generate the oncoplot.
library(MAFDash)
library(maftools)
<- system.file("extdata", "test.mutect2.maf.gz", package = "MAFDash")
maf generateOncoPlot(read.maf(maf,verbose = FALSE))
##Burden Plot The burdenplot compares the total number of mutations between the samples using a dotplot. The figure also have a barplot showing the distribution of different type of mutations across the samples using a barplot.
library(MAFDash)
library(maftools)
<- system.file("extdata", "test.mutect2.maf.gz", package = "MAFDash")
maf generateBurdenPlot(read.maf(maf,verbose = FALSE), plotType="Dotplot")
generateBurdenPlot(read.maf(maf,verbose = FALSE), plotType="Barplot")
##Mutation Type plot This function generates silent and non-silent mutation plot using the MAF data.
library(MAFDash)
library(maftools)
<- system.file("extdata", "test.mutect2.maf.gz", package = "MAFDash")
maf generateMutationTypePlot(read.maf(maf,verbose = FALSE))
##TiTv plot This function plot the frequency of Transitions and Transversions of gene mutations
library(MAFDash)
library(maftools)
library(plotly)
<- system.file("extdata", "test.mutect2.maf.gz", package = "MAFDash")
maf <-generateTiTvPlot(read.maf(maf,verbose = FALSE))
plots::subplot(plotly::subplot(plots$tiTvPatterns,plots$TiTv, nrows = 1, widths = c(0.5, 0.25)),plots$barplot,nrows = 2) plotly
##TCGA Compare plot This function plot the comparison of the mutation load against TCGA cohorts
library(MAFDash)
library(maftools)
<- system.file("extdata", "test.mutect2.maf.gz", package = "MAFDash")
maf <- read.maf(maf = maf,verbose = FALSE)
maf <-generateTCGAComparePlot(maf = maf, cohortName = "test")
l$tcga_compare_plot l
The getMAFDashboard()
function will accept a named list for adding arbitrary objects to the dashboard. Each item in the list will be displayed in separate tabs, and the name of the element will be used as the title of the tab.
Elements of the list can be:
This functionality can be used with or without providing a MAF file. When MAF data is not provided, the “Variant Table” tab of the dashboard is automatically omitted.
iris
datalibrary(ggplot2)
library(plotly)
library(ComplexHeatmap)
data(iris)
## Simple ggplot
<- ggplot(iris) + geom_point(aes(x=Sepal.Length, y=Sepal.Width, color=Species))
myplot
## Save as PNG (provide absolute file path)
<- file.path(getwd(),"custom_ggplot.png")
mycustomimage_png ggsave(mycustomimage_png, plot=myplot, width=5, height=4)
## Save as PDF (provide absolute file path)
<- file.path(getwd(),"custom_ggplot.pdf")
mycustomimage_pdf ggsave(mycustomimage_pdf, plot=myplot, width=5, height=4)
## Convert ggplot to plotly
<- ggplotly(myplot)
myplotly
## Make heatmap with ComplexHeatmap
<- t(iris[,1:4])
hmdata <- HeatmapAnnotation(df=data.frame(Species=iris[,5]))
hmanno <- Heatmap(hmdata, bottom_annotation = hmanno)
myhm
## Customizable plotly from https://github.com/mtandon09/Dynamic_Plotly
source("https://raw.githubusercontent.com/mtandon09/Dynamic_Plotly/master/make_cutomizable_plotly.R")
<- make_customizable_plotly(iris)
custom_plotly
## Put together objects/filepaths into a list
<- list("ggplot"= myplot,
toyplotlist "plotly"= myplotly,
"PNG"= mycustomimage_png,
"PDF"= mycustomimage_pdf,
"ComplexHeatmap"= myhm,
"Customizable"= custom_plotly
)
## Filename to output to
="toy_dash.html"
html_filename
## Render dashboard
getMAFDashboard(plotList = toyplotlist,
outputFileName = html_filename,
outputFileTitle = "Iris")
Output The output can be seen here.
#Advanced Example
TCGABiolinks
MAFDash provides a wrapper function that tries to simplify retrieving data using TCGABiolinks
. Valid project codes can be viewed by running TCGABiolinks::getGDCprojects()
and checking the “tumor” column.
library(MAFDash)
library(TCGAbiolinks)
<- c("ACC","UVM")
tcga_code #inputFolderPath <- paste0(tempdir()) ## This folder will be created if it doesn't exist
= "mutect2"
caller = paste0("TCGA-",tcga_code)
title_label
#maf_files <- getMAFdataTCGA(tcga_code,outputFolder = tempdir(),variant_caller = caller)
TCGABiolinks
# tcga_clinical <- getTCGAClinicalAnnotation#TCGAbiolinks::GDCquery_clinic(project = paste0("TCGA-",tcga_code), type = "clinical")
# tcga_clinical$Tumor_Sample_Barcode <- tcga_clinical$submitter_id
<- getOption("warn")
defaultW options(warn = -1)
<-getTCGAClinicalAnnotation(cancerCodes = tcga_code)
tcga_clinicaloptions(warn = defaultW)
The filterMAF
function can be used to filter the MAF data in various ways. Importantly, by default, it will remove commonly occurring mutations that are often considered to be false position ( FLAG genes )
#maf_files<- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
<- do.call("rbind",lapply(maf_files, function(maf_file){filter_maf_chunked(maf_file)})) filtered_mafdata
The easiest way to add clinical annotations to the oncoplot is to add clinical data to the clinical.data
slot of a MAF
object before passing it to the generateOncoplot()
function.
MAFDash also provides a function that defines reasonable colors for some common clinical annotations provided with TCGA datasets.
<- read.maf(filtered_mafdata, clinicalData = tcga_clinical$annodata,verbose = FALSE)
filtered_maf <- getTCGAClinicalColors(ageRange = range(tcga_clinical$annodata$age_at_diagnosis, na.rm=T)) annotation_colors
The add_clinical_annotations
argument can be:
clinical.data
slot of the MAF
object. Columns with all missing values are ignored. Maximum number of annotations plotted is 10 (first 10 non-empty columns of clinical.data
)<- generateOncoPlot(filtered_maf,
custom_onco add_clinical_annotations = names(annotation_colors),
clin_data_colors = annotation_colors)
custom_onco
A lot of maftools
’s plots are base graphics, so they’re drawn to a device and not returned. But we can simply save them to a file and provide the file path.
<-generateTCGAComparePlot(maf = filtered_maf, cohortName = "test")
tcgaComparePlot$tcga_compare_plot tcgaComparePlot
This function is built on top of maftools
’s somaticInteractions()
function. It’s just a different way of visualizing co-occurence or mutual exclusivity between genes.
#ribbonplot_file <- file.path(getwd(),"ribbon.pdf")
generateRibbonPlot(filtered_maf,save_name = NULL)
<- list("summary_plot"=T,
customplotlist "burden"=T,
"TCGA Comparison"=tcgaComparePlot$tcga_compare_plot,
"oncoplot"=T,
"Annotated Oncoplot"=custom_onco
)
## Filename to output to; if output directory doesn't exist, it will be created
=file.path(paste0(tempdir(),"/TCGA-UVM.custom.mafdash.html"))
html_filename
## Render dashboard
getMAFDashboard(MAFfilePath = filtered_maf,
plotList = customplotlist,
outputFileName = html_filename,
outputFileTitle = "Customized Dashboard")
The output can be seen here.