Persistent Data Anonymization Pipeline


[Up] [Top]

Documentation for package ‘deident’ version 1.0.0

Help Pages

adaptive_noise Function factory to apply white noise to a vector proportional to the spread of the data
add_blur De-identification via categorical aggregation
add_encrypt De-identification via hash encryption
add_group Add aggregation to pipelines
add_numeric_blur De-identification via numeric aggregation
add_perturb De-identification via random noise
add_pseudonymize De-identification via replacement
add_shuffle De-identification via random sampling
add_ungroup Add aggregation to pipelines
apply_deident Apply a 'deident' pipeline
apply_to_data_frame Apply a 'deident' pipeline to a new data frame
BaseDeident Base class for all De-identifier classes
Blurer Deidentifier class for applying 'blur' transform
category_blur Utility for producing 'blur'
create_deident Create a deident pipeline
deident Define a transformation pipeline
deident_job_from_folder Apply a pipeline to files on disk.
Drop R6 class for the removal of variables from a pipeline
Encrypter Deidentifier class for applying 'encryption' transform
from_yaml Restore a serialized deident from file
GroupedShuffler GroupedShuffler class for applying 'shuffling' transform with data aggregated
lognorm_noise Function factory to apply log-normal noise to a vector
NumericBlurer Group numeric data into baskets
Perturber R6 class for deidentification via random noise
Pseudonymizer R6 class for deidentification via replacement
ShiftsWorked Synthetic data set listing daily shift pattern for fictitious employees
Shuffler Shuffler class for applying 'shuffling' transform
starwars Starwars characters
white_noise Function factory to apply white noise to a vector