balanced.cv.fold | Split a dataset for Cross Validation taking into account class balance |
balanced.loss.weights | Compute loss.weights so that total losses of each class is balanced |
bhattacharyya.coefficient | Compute Bhattacharyya coefficient needed for Hellinger distance |
binaryClassificationLoss | Loss functions for binary classification |
costMatrix | Compute or check the structure of a cost matrix |
epsilonInsensitiveRegressionLoss | Loss functions to perform a regression |
fbetaLoss | Loss functions for binary classification |
gradient | Return or set gradient attribute |
gradient.default | Return or set gradient attribute |
gradient<- | Return or set gradient attribute |
gradient<-.default | Return or set gradient attribute |
hclust_fca | Find first common ancestor of 2 nodes in an hclust object |
hellinger.dist | Compute Hellinger distance |
hingeLoss | Loss functions for binary classification |
is.convex | Return or set is.convex attribute |
is.convex.default | Return or set is.convex attribute |
is.convex<- | Return or set is.convex attribute |
is.convex<-.default | Return or set is.convex attribute |
iterative.hclust | Perform multiple hierachical clustering on random subsets of a dataset |
ladRegressionLoss | Loss functions to perform a regression |
linearRegressionLoss | Loss functions to perform a regression |
lmsRegressionLoss | Loss functions to perform a regression |
logisticLoss | Loss functions for binary classification |
lpSVM | Linearly Programmed SVM |
lvalue | Return or set lvalue attribute |
lvalue.default | Return or set lvalue attribute |
lvalue<- | Return or set lvalue attribute |
lvalue<-.default | Return or set lvalue attribute |
mmc | Convenient wrapper function to solve max-margin clustering problem on a dataset |
mmcLoss | Loss function for max-margin clustering |
multivariateHingeLoss | The loss function for multivariate hinge loss |
nrbm | Convex and non-convex risk minimization with L2 regularization and limited memory |
nrbmL1 | Convex and non-convex risk minimization with L2 regularization and limited memory |
ontologyLoss | Ontology Loss Function |
ordinalRegressionLoss | The loss function for ordinal regression |
predict.mmc | Predict class of new instances according to a mmc model |
predict.svmLP | Linearly Programmed SVM |
predict.svmMLP | Linearly Programmed SVM |
preferenceLoss | The loss function for Preference loss |
print.roc.stat | Generic method overlad to print object of class roc.stat |
quantileRegressionLoss | Loss functions to perform a regression |
rank.linear.weights | Rank linear weight of a linear model |
roc.stat | Compute statistics for ROC curve plotting |
rocLoss | Loss functions for binary classification |
rowmean | Columun means of a matrix based on a grouping variable |
softMarginVectorLoss | Soft Margin Vector Loss function for multiclass SVM |
softmaxLoss | softmax Loss Function |
svmLP | Linearly Programmed SVM |
svmMulticlassLP | Linearly Programmed SVM |
wolfe.linesearch | Wolfe Line Search |